Given that cyclooxygenase-2 (COX-2) plays a crucial role during cerebral ischemia and Apobec-1 is a critical regulator of COX-2 mRNA stabilization in gastrointestinal settings, the correlation of COX-2 and Apobec-1 was investigated in neurogenic cells and rat model of cerebral ischemia. After neurogenic SH-SY5Y, NG108-15 and PC12 cells were exposed to oxygen-glucose deprivation, cell viability, LDH leakage and Apobec-1 expression were determined. The effect of Apobec-1 overexpression on injury severity of oxygen-glucose deprivation, COX-2 expression, C-to-U editing of COX-2 mRNA were measured in vitro. Then the correlation of Apobec-1 level and injury severity was analyzed in cells with oxygen-glucose deprivation and in rats with middle cerebral artery occlusion. Apobec-1 expression was elevated along with upregulation of COX-2 and injury severity of oxygen-glucose deprivation in the three cell lines. Apobec-1 overexpression aggravated injury of oxygen-glucose deprivation in vitro and could be correlated to injury severity in vivo. Meanwhile, Apobec-1 increased COX-2 expression and COX-2 mRNA stabilization in neurogenic cells, and failed to catalyze C-to-U editing of COX-2 mRNA. Apobec-1 could upregulate COX-2 expression in neurogenic cells by stabilizing COX-2 mRNA, and might aggravate injury of oxygen-glucose deprivation in neurogenic cells as well as in rats with cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.