Several mechanisms driving SARS-CoV-2 transmission remain unclear. Based on individual records of 1178 potential SARS-CoV-2 infectors and their 15,648 contacts in Hunan, China, we estimated key transmission parameters. The mean generation time was estimated to be 5.7 (median: 5.5, IQR: 4.5, 6.8) days, with infectiousness peaking 1.8 days before symptom onset, with 95% of transmission events occurring between 8.8 days before and 9.5 days after symptom onset. Most transmission events occurred during the pre-symptomatic phase (59.2%). SARS-CoV-2 susceptibility to infection increases with age, while transmissibility is not significantly different between age groups and between symptomatic and asymptomatic individuals. Contacts in households and exposure to first-generation cases are associated with higher odds of transmission. Our findings support the hypothesis that children can effectively transmit SARS-CoV-2 and highlight how pre-symptomatic and asymptomatic transmission can hinder control efforts.
Ion mobility and mass spectrometry measurements are used to examine the gas-phase populations of [M+8H]8+ ubiquitin ions formed upon electrospraying 20 different solutions: from 100:0 to 5:95 water:methanol that are maintained at pH = 2.0. Over this range of solution conditions, mobility distributions for the +8 charge state show substantial variations. Here we develop a model that treats the combined measurements as one data set. By varying the relative abundances of a discrete set of conformation types, it is possible to represent distributions obtained from any solution. For solutions that favor the well-known A-state ubiquitin, it is possible to represent the gas-phase distributions with seven conformation types. Aqueous conditions that favor the native structure require four more structural types to represent the distribution. This analysis provides the first direct evidence for trace amounts of the A state under native conditions. The method of analysis presented here should help illuminate how solution populations evolve into new gas-phase structures as solvent is removed. Evidence for trace quantities of previously unknown states under native solution conditions may provide insight about the relationship of dynamics to protein function as well as misfolding and aggregation phenomena.
Polyproline exists predominately as the all-cis polyproline I (PPI) helix in aliphatic alcohols, whereas the all-trans polyproline II (PPII) helix is favored in aqueous solutions. Previous ion mobility spectrometry-mass spectrometry (IMS-MS) work demonstrates that the gas-phase conformations of polyproline ions can be related to the corresponding PPI and PPII helices in solution [J. Phys. Chem. B 2004, 108, 4885]. Here, we use IMS-MS to examine the detailed intermediate steps associated with the process of Polyproline-13 (Pro13) conversion from the PPI helix to the PPII helix upon solvent exchange. Collision cross section distributions of Pro13 [M + 2H](2+) ions obtained at different transition times indicate the presence of two major conformers, identified as the PPI and PPII helices, and six conformers that appear as subpopulations of polyproline. Further analysis shows a transition mechanism with sequential cis-trans isomerizations followed by a parallel process to establish PPII and two smaller subpopulations at equilibrium. Temperature-dependent studies are used to obtain Arrhenius activation parameters for each step of the mechanism, and molecular dynamics simulations provide insight about the structures of the intermediates. It appears that prolines sequentially flip from cis to trans starting from the N-terminus. However, after the first few transitions, possible steps take place at the center of the peptide chain; subsequently, several pathways appear to be accessible at the same time. Our results reflect the existence of stable subpopulations in polyprolines and provide new insight into the structural changes during the transition process of polyproline peptides converting from PPI to PPII in aqueous solution.
BackgroundThe present study investigated the prevalence of refractive error, visual impairment, and eye diseases in school-aged children in western China.MethodsThe survey was done in a representative county (Yongchuan District, Chongqing Municipality) of western China. Cluster random sampling was used to select children aged 6 to 15 years. We conducted door-to-door surveys and eye examinations including optometry, stereoscopic vision test, eye position and eye movement, slit lamp examination of the anterior segment, retinoscopy, and fundus examination after cycloplegia with 1% cyclopentolate.ResultsAmong 3469 children, data were available for 3079 (88.76%). The prevalences of eye diseases were, in descending order, refractive error (20.69%; 637/3079), conjunctivitis (11.76%; 362/3079), amblyopia (1.88%; 58/3079), color vision defect (0.52%; 16/3079), keratitis (0.36%; 11/3079), strabismus (0.29%; 9/3079), cataract (0.23%; 7/3079), pathologic myopia (0.19%; 6/3079), and ocular trauma (0.13%; 4/3079). The prevalence of corneal leucoma, corneal staphyloma, optic neuropathy, macular degeneration, and myelinated nerve fibers was 0.03% (1/3079) for each. The prevalence of visual impairment was 7.70% (237/3079), and the major causes of visual impairment were uncorrected refractive error (86.08%; 204/237), amblyopia (9.70%; 23/237), pathologic myopia (1.27%; 3/237), congenital cataract (0.42%; 1/237), and others (2.11%; 5/237).ConclusionsAmong school-aged children in a less developed area of western China, refractive error was the most prevalent eye disorder, and uncorrected refractive error was the main cause of visual impairment.
Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B ؉ neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.