Once a hazardous gas leaks, it will pose a serious threat to the safety of people's lives and property. This paper aims to investigate the flow characteristics of heavy gas leakage and diffusion to deal with sudden accidents caused by hazardous gas leakage.First, an experimental platform for the leakage and diffusion of heavy gas is built, and the tracer technique is adopted to visualize the experimental phenomena during the process of gas leakage and diffusion. Second, a computational fluid dynamics (CFD) model is built based on the experimental platform to simulate and analyze the gas leakage and diffusion process. The CFD model is verified by comparing the numerical results with those of experiments using an authoritative evaluation standard procedure. The comparison shows that the related statistical performance measures are all reasonable. Third, a three-dimensional numerical model of a real tank farm is created in full scale and the heavy gas (liquefied petroleum gas) leakage process is simulated and analyzed considering also the effect of wind. Experimental and numerical resultsshow that the heavy gas leakage and diffusion process can be divided into three stages: gas concentration rising stage, gravity sedimentation stage, and gas passive diffusion stage, in which different flow phenomena are observed with different flow characteristics for each of the stages. The phenomena observed in experiment are further analyzed and clarified using fluid dynamics by numerical simulation. The fullscale modeling and simulation of the real tank farm is helpful for taking possible measures once a gas leakage occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.