With the development of online education, there is an urgent need to solve the problem of the low completion rate of online learning courses. Although learning peer recommendation can effectively address this problem, prior studies of learning peer-recommendation methods extract only a portion of the interaction information and fail to take into account the heterogeneity of the various types of objects (e.g., students, teachers, videos, exercises, and knowledge points). To better motivate students to complete online learning courses, we propose a novel method to recommend learning peers based on a weighted heterogeneous information network. First, we integrate the above different objects, various relationships between objects, and the attribute values to links in a weighted heterogeneous information network. Second, we propose a method for automatically generating all meaningful weighted meta-paths to extract and identify meaningful meta-paths. Finally, we use the Bayesian Personalized Ranking (BPR) optimization framework to discover the personalized weights of target students on different meaningful weighted meta-paths. We conducted experiments using three real datasets, and the experimental results demonstrate the effectiveness and interpretability of the proposed method.
Massive open online courses have attracted millions of learners worldwide with flexible learning options. However, online learning differs from offline education in that the lack of communicative feedback is a drawback that magnifies high dropout rates. The analysis and prediction of student’s online learning process can help teachers find the students with dropout tendencies in time and provide additional help. Previous studies have shown that analyzing learning behaviors at different time scales leads to different prediction results. In addition, noise in the time-series data of student behavior can also interfere with the prediction results. To address these issues, we propose a dropout prediction model that combines a multiscale fully convolutional network and a variational information bottleneck. The model extracts multiscale features of student behavior time-series data by constructing a multiscale full convolutional network and then uses a variational information bottleneck to suppress the effect of noise on the prediction results. This study conducted multiple cross-validation experiments on KDD CUP 2015 data set. The results showed that the proposed method achieved the best performance compared to the baseline method.
In this paper, a key node mining algorithm of entropy-CRITIC combined weighted GRA-TOPSIS method is proposed, which is based on the network structure features. First, the method obtained multi-dimensional data of students' identities, seating relationships, social relationships, and so on to build a database. Then, the seating similarity among students was used to construct the in-class social networks and analyze the structural characteristics of them. Finally, the CRITIC and entropy weight method was introduced for obtaining the combined weight values and the GRA-TOPSIS multi-decision fusion algorithm to mine the key student nodes that have negative impact. The experiments showed that the algorithm of this paper can evaluate students objectively based on their classroom social networks, providing technical support for process-oriented comprehensive quality education evaluation.
To improve learners’ performance in online learning, a teacher needs to understand the difficulty of knowledge points learners of different cognitive encounter levels in the learning process. This paper proposes a difficulty-based knowledge point clustering algorithm based on collaborative analysis of multi-interactive behaviors. Firstly, combining the group-directed learning path network, forgetting factors and the degree of student-system interaction, we propose a measurement model to calculate the similarity of the difficulty between knowledge points on student-system interactive behavior. Secondly, to solve the data sparsity problem of interaction, we propose an improved similarity model to calculate the similarity of the difficulty between knowledge points on student-teacher and student-student interactive behavior. Finally, the knowledge point difficulty similarity matrix is obtained by integrating the difficulty similarity of knowledge points obtained from student-system interactive behavior, student-teacher interactive behavior, and student-student interactive behavior. The spectral clustering algorithm is used to achieve knowledge point difficulty classification based on the obtained similarity matrix. The experiments on real datasets show that the proposed method has better knowledge point difficulty classification results than the existing methods.
To help students choose the knowledge concepts that meet their needs so that they can learn courses in a more personalized way, thus improving the effectiveness of online learning, this paper proposes a knowledge concept recommendation model based on tensor decomposition and transformer reordering. Firstly, the student tensor, knowledge concept tensor, and interaction tensor are created based on the heterogeneous data of the online learning platform are fused and simplified as an integrated tensor; secondly, we perform multi-dimensional comprehensive analysis on the integrated tensor with tensor-based high-order singular value decomposition to obtain the student personalized feature matrix and the initial recommendation sequence of knowledge concepts, and then obtain the latent embedding matrix of knowledge concepts via Transformer that combine initial recommendation sequence of knowledge concepts and knowledge concept learning sequential information; finally, the final Top-N knowledge concept recommendation list is generated by fusing the latent embedding matrix of knowledge concepts and the students’ personalized feature matrix. Experiments on two real datasets show that the model recommendation performance of this paper is better compared to the baseline model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.