Massive open online courses have attracted millions of learners worldwide with flexible learning options. However, online learning differs from offline education in that the lack of communicative feedback is a drawback that magnifies high dropout rates. The analysis and prediction of student’s online learning process can help teachers find the students with dropout tendencies in time and provide additional help. Previous studies have shown that analyzing learning behaviors at different time scales leads to different prediction results. In addition, noise in the time-series data of student behavior can also interfere with the prediction results. To address these issues, we propose a dropout prediction model that combines a multiscale fully convolutional network and a variational information bottleneck. The model extracts multiscale features of student behavior time-series data by constructing a multiscale full convolutional network and then uses a variational information bottleneck to suppress the effect of noise on the prediction results. This study conducted multiple cross-validation experiments on KDD CUP 2015 data set. The results showed that the proposed method achieved the best performance compared to the baseline method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.