We report bulk superconductivity induced by an isovalent doping of phosphorus in BaFe(2)(As(1-x)P(x))(2). The P-for-As substitution results in shrinkage of the lattice, especially for the FeAs block layers. The resistivity anomaly associated with the spin-density-wave (SDW) transition in the undoped compound is gradually suppressed by the P doping. Superconductivity with a maximum T(c) of 30 K emerges at x = 0.32, coinciding with a magnetic quantum critical point (QCP) which is shown by the disappearance of SDW order and the linear temperature-dependent resistivity in the normal state. The T(c) values were found to decrease with further P doping and no superconductivity was observed down to 2 K for x≥0.77. The appearance of superconductivity in the vicinity of QCP hints at the superconductivity mechanism in iron-based arsenides.
{112} ⟨111⟩ mechanical twinning and stress-induced omega transition were observed by high-resolution transmission electron microscope in a metastable β titanium alloy with chemical composition of Ti-23Nb-0.7Ta-2Zr-1.2O at. % after deformation. The orientation relationships between the ω phase and β parent matrix are (1¯010)ω‖(211)β, [12¯10]ω‖[01¯1]β and [0001]ω‖[1¯11]β, and the habit plane of (1¯010)ω‖(211)β for the stress-induced ω transition is different from that of (0001)ω‖(111)β often observed for the thermal ω transition. Both mechanical twinning and ω transition arise from the shear along ⟨111⟩ {112}. A dislocation mechanism for mechanical twinning and stress-induced ω transition was discussed additionally.
Generally, certain parts of aircraft and weapons, for example, head cone, engine inlet and nozzle, need to be resistant to high-temperature and high-speed heat flow. In order to meet the requirement of stealth of these special parts, the high-temperature structural absorbing materials, for example, ceramic fibers, ceramic matrix composites and creative commons (C/C) materials are being actively developed at home and abroad. Continuous and increasing efforts have also been made in the last decade aiming at developing excellent electromagnetic (EM) wave absorbents, for example, SiC working at high temperature. An ideal EM absorber should be relatively lightweight, thermally stable, capable of broad absorbing frequency and cost effective. Different kinds of high-temperature absorbers including ceramics, carbon-based materials, ferromagnetic materials and metal oxides have been summarized and discussed in this review. This review intends to inspire new concepts and approaches for designing excellent high-temperature microwave-absorbing materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.