Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG), sclerostin (SOST), and Dickopf (DKK) which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, such as osteocalcin (OCN), which promotes proliferation of β cells, insulin secretion, and insulin sensitivity. Additionally OCN can also regulate the fat cells and male gonad endocrine activity and be regulated by insulin and the neural system. In summary, skeleton has endocrine function via OCN and plays an important role in energy metabolism, especially in glucose metabolism.
Purpose This research was designed to investigate how miR-542-5p regulates the progression of hyperglycemia and hyperlipoidemia. Materials and Methods An in vivo model with diabetic db/db mice and an in vitro model with forskolin/dexamethasone (FSK/DEX)-induced primary hepatocytes and HepG2 cells were employed in the study. Bioinformatics analysis was conducted to identify the expression of candidate miRNAs in the liver tissues of diabetic and control mice. H&E staining revealed liver morphology in diabetic and control mice. Pyruvate tolerance tests, insulin tolerance tests, and intraperitoneal glucose tolerance test were utilized to assess insulin resistance. ELISA was conducted to evaluate blood glucose and insulin levels. Red oil O staining showed lipid deposition in liver tissues. Luciferase reporter assay was used to depict binding between miR-542-5p and forkhead box O1 (FOXO1). Results MiR-542-5p expression was under-expressed in the livers of db/db mice. Further in vitro experiments revealed that FSK/DEX, which mimics the effects of glucagon and glucocorticoids, induced cellular glucose production in HepG2 cells and in primary hepatocytes cells. Notably, these changes were reversed by miR-542-5p. We found that transcription factor FOXO1 is a target of miR-542-5p. Further in vivo study indicated that miR-542-5p overexpression decreases FOXO1 expression, thereby reversing increases in blood glucose, blood lipids, and glucose-related enzymes in diabetic db/db mice. In contrast, anti-miR-542-5p exerted an adverse influence on blood glucose and blood lipid metabolism, and its stimulatory effects were significantly inhibited by sh-FOXO1 in normal control mice. Conclusion Collectively, our results indicated that miR-542-5p inhibits hyperglycemia and hyperlipoidemia by targeting FOXO1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.