In this paper, we propose a new 3D passive image sensing and visualization technique to improve lateral resolution and depth of field (DoF) of integral imaging simultaneously. There is a resolution trade-off between lateral resolution and DoF in integral imaging. To overcome this issue, a large aperture and a small aperture can be used to record the elemental images to reduce the diffraction effect and extend the DoF, respectively. Therefore, in this paper, we utilize these two pickup concepts with a non-uniform camera array. To show the feasibility of our proposed method, we implement an optical experiment. For comparison in details, we calculate the peak signal-to-noise ratio (PSNR) as the performance metric.
In this work, the design, building, and testing of the most portable, easy-to-build, robust, handheld, and cost-effective Fourier Lightfield Microscope (FLMic) to date is reported. The FLMic is built by means of a surveillance camera lens and additional off-the-shelf optical elements, resulting in a cost-effective FLMic exhibiting all the regular sought features in lightfield microscopy, such as refocusing and gathering 3D information of samples by means of a single-shot approach. The proposed FLMic features reduced dimensions and light weight, which, combined with its low cost, turn the presented FLMic into a strong candidate for in-field application where 3D imaging capabilities are pursued. The use of cost-effective optical elements has a relatively low impact on the optical performance, regarding the figures dictated by the theory, while its price can be at least 100 times lower than that of a regular FLMic. The system operability is tested in both bright-field and fluorescent modes by imaging a resolution target, a honeybee wing, and a knot of dyed cotton fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.