Three-dimensional (3D) multi-input-multi-output (MIMO) is one of the enabling technologies for next-generation mobile communication. As the elevation angle in the 3D MIMO channel model might vary against the height of the base station (BS) antenna, it should be considered within channel modeling. In this paper, the impact of antenna height on the channel characteristics of the 3D MIMO channel is investigated by using the intelligent ray launching algorithm (IRLA). Three typical street scenarios, i.e., the straight street, the forked road, and the crossroad, are selected as benchmarks. The joint and marginal probability density functions (PDFs) of both the elevation angle of departure (EAoD) and the elevation angle of arrival (EAoA) are obtained through simulations. Moreover, the elevation angle spread (AS) and the elevation delay spread (DS) under various antenna heights are jointly discussed. Simulation results show that the characteristics of the PDFs of EAoD will vary under different street scenarios. It is observed that in order to obtain the maximum or minimum value of the AS and the DS, the BS antenna should be deployed at half of the building height.
In this paper, we propose a novel posterior belief clustering (PBC) algorithm to solve the tradeoff between target tracking performance and sensors energy consumption in wireless sensor networks. We model the target tracking under dynamic uncertain environment using partially observable Markov decision processes (POMDPs), and transform the optimization of the tradeoff between tracking performance and energy consumption into yielding the optimal value function of
POMDPs. We analyze the error of a class of continuous posterior beliefs by Kullback-Leibler (KL) divergence, and cluster these posterior beliefs into one based on the error of KL divergence. So, we calculate the posterior reward value only once for each cluster to eliminate repeated computation. The numerical results show that the proposed algorithm has its effectiveness in optimizing the tradeoff between tracking performance and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.