We investigated the preparation of bulk dense nanocrystalline BaTiO 3 and Ni-Cu-Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO 3 with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y 2 O 3 , the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO 3 ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics. J ournal
Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multiobject tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi-object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multimodality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report stateof-the-art performance. Code and models are available at
The visual cues from multiple support regions of different sizes and resolutions are complementary in classifying a candidate box in object detection. Effective integration of local and contextual visual cues from these regions has become a fundamental problem in object detection. In this paper, we propose a gated bi-directional CNN (GBD-Net) to pass messages among features from different support regions during both feature learning and feature extraction. Such message passing can be implemented through convolution between neighboring support regions in two directions and can be conducted in various layers. Therefore, local and contextual visual patterns can validate the existence of each other by learning their nonlinear relationships and their close interactions are modeled in a more complex way. It is also shown that message passing is not always helpful but dependent on individual samples. Gated functions are therefore needed to control message transmission, whose on-or-offs are controlled by extra visual evidence from the input sample. The effectiveness of GBD-Net is shown through experiments on three object detection datasets, ImageNet, Pascal VOC2007 and Microsoft COCO. Besides the GBD-Net, this paper also shows the details of our approach in winning the ImageNet object detection challenge of 2016, with source code provided on https://github.com/craftGBD/craftGBD. In this winning system, the modified GBD-Net, new pretraining scheme and better region proposal designs are provided. We also show the effectiveness of different network structures and existing techniques for object detection, such as multi-scale testing, left-right flip, bounding box voting, NMS, and context.
Due to the expensive and time-consuming annotations (e.g., segmentation) for real-world images, recent works in computer vision resort to synthetic data. However, the performance on the real image often drops significantly because of the domain shift between the synthetic data and the real images. In this setting, domain adaptation brings an appealing option. The effective approaches of domain adaptation shape the representations that (1) are discriminative for the main task and (2) have good generalization capability for domain shift. To this end, we propose a novel loss function, i.e., Conservative Loss, which penalizes the extreme good and bad cases while encouraging the moderate examples. More specifically, it enables the network to learn features that are discriminative by gradient descent and are invariant to the change of domains via gradient ascend method. Extensive experiments on synthetic to real segmentation adaptation show our proposed method achieves state of the art results. Ablation studies give more insights into properties of the Conservative Loss. Exploratory experiments and discussion demonstrate that our Conservative Loss has good flexibility rather than restricting an exact form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.