In this paper, a new Probabilistic Sensitivity Analysis (PSA) approach based on the concept of relative entropy is proposed for design under uncertainty. The relative entropy based method evaluates the impact of a random variable on a design performance by measuring the divergence between two probability density functions of a performance response, obtained before and after the variance reduction of the random variable. The method can be applied both over the whole distribution of a performance response (called global response probabilistic sensitivity analysis-GRPSA) and in any interested partial range of a response distribution (called regional response probabilistic sensitivity analysis-RRPSA). Such flexibility of our approach facilitates its use under various scenarios of design under uncertainty, for instance in robust design, reliability-based design, and utility optimization. The proposed method is applicable to both the priordesign stage for variable screening when a design solution is yet identified and the postdesign stage for uncertainty reduction after an optimal design has been determined. The saddlepoint approximation approach is introduced for improving the computational efficiency of applying our proposed method. The proposed method is illustrated and verified by numerical examples and industrial design cases.
Long non-coding RNAs (lncRNAs) play important roles in malignant neoplasia. Indeed, many hallmarks of cancer define that the malignant phenotype of tumor cells are controlled by lncRNAs. Despite a growing number of studies highlighting their importance in cancer, there has been no systematic review of metastasis-associated lncRNAs in various cancer types. Accordingly, we focus on the key metastasis-related lncRNAs and outline their expression status in cancer tissues by reviewing the previous stuides, in order to summarize the nowadays research achivements for lncRNAs related to cancer metastasis. Medline, EMBASE, as well as PubMed databases were applied to study lncRNAs which were tightly associated with tumor invasion and metastasis. Up to now, a substantial number of lncRNAs have been found to have important biological functions. In this review, according to their various features in cancer, lncRNAs were roughly divided into three categories: promoting tumor invasion and metastasis, negative regulation of tumor metastasis and with dual regulatory roles. The present studies may establish the foundation for both further research on the mechanisms of cancer progression and future lncRNA-based clinical applications.
Identifying the key factor mediating pathological cardiac hypertrophy is critically important for developing the strategy to protect against heart failure. Bone morphogenetic protein-4 (BMP4) is a mechanosensitive and proinflammatory gene. In this study, we investigated the role of BMP4 in cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. The in vivo pathological cardiac hypertrophy models were induced by pressure-overload and angiotensin (Ang) II constant infusion in mice, and the in vitro model was induced by Ang II exposure to cultured cardiomyocytes. The expression of BMP4 increased in pressure overload, Ang II constant infusion-induced pathological cardiac hypertrophy, but not in swimming exercise-induced physiological cardiac hypertrophy in mice. BMP4 expression also increased in Ang II–induced cardiomyocyte hypertrophy in vitro. In turn, BMP4 induced cardiomyocyte hypertrophy, apoptosis, and cardiac fibrosis, and these pathological consequences were inhibited by the treatment with BMP4 inhibitors noggin and DMH1. Moreover, Ang II–induced cardiomyocyte hypertrophy was inhibited by BMP4 inhibitors. The underlying mechanism that BMP4-induced cardiomyocyte hypertrophy and apoptosis was through increasing NADPH oxidase 4 expression and reactive oxygen species-dependent pathways. Lentivirus-mediated overexpression of BMP4 recapitulated hypertrophy and apoptosis in cultured cardiomyocytes. BMP4 inhibitor DMH1 inhibited pressure overload–induced cardiac hypertrophy in mice in vivo. The plasma BMP4 level of heart failure patients was increased compared with that of subjects without heart failure. In summary, we conclude that BMP4 is a mediator and novel therapeutic target for pathological cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.