This article investigates the influence of the thermal performance of building envelopes on annual energy consumption in a ground-buried office building by means of the dynamic building energy simulation, aiming at offering reasonable guidelines for the energy efficient design of envelopes for underground office buildings in China. In this study, the accuracy of dealing with the thermal process for underground buildings by using the Designer's Energy Simulation Tool (DeST) is validated by measured data. The analyzed results show that the annual energy consumptions for this type of buildings vary significantly, and it is based on the value of the overall heat transfer coefficient (U-value) of the envelopes. Thus, it is necessary to optimize the U-value for underground buildings located in various climatic zones in China. With respect to the roof, an improvement in its thermal performance is significantly beneficial to the underground office building in terms of annual energy demand. With respect to the external walls, the optimized U-values completely change with the distribution of the climate zones. The recommended optimal values for various climate zones of China are also specified as design references for public office building in underground in terms of the building energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.