We investigated effects of exercise habits (EHs) in adolescence and old age on osteoporosis prevalence and hip joint and lumbar spine bone mineral density (BMD). Body composition and BMD in 1596 people aged 65–84 years living in Bunkyo-ku, Tokyo, were measured using dual-energy X-ray absorptiometry. We divided participants into four groups by a combination of EHs in adolescence and old age: none in either period (None-None), only in adolescence (Active-None), only in old age (None-Active), and in both periods (Active-Active). Logistic regression models were employed to estimate multivariable-adjusted odds ratios (ORs) for osteoporosis determined by T-score (less than −2.5 SD) using the None-None reference group. In men, the combination of EHs in adolescence and old age was not associated with osteoporosis prevalence. However, the lumbar spine’s BMD was significantly higher in the Active-Active than the None-Active group (p = 0.043). In women, the Active-Active group had lower lumbar spine osteoporosis prevalence than the None-None group (OR 0.65; 95% CI, 0.42–1.00, p = 0.049). Furthermore, hip BMD was significantly higher in the Active-Active group than in the other three groups (p = 0.001). Older women with EHs in adolescence and old age had higher lumbar BMD and lower risk of osteoporosis.
Dietary habits are associated with various diseases and assessed by dietary patterns (DPs). Since the ALDH2 genotype is correlated with alcohol and several food preferences, this genotype is probably associated with DPs. In this cross-sectional study of 1612 elderly adults, we investigated the effects of the ALDH2 genotype on DPs and the mediating role of alcohol intake. We identified the ALDH2 genotype and conducted a dietary history survey, then used principal component analysis to determine DPs for each gender. We performed multiple regression analysis to determine the independent contribution of the ALDH2 genotype and alcohol intake to DP scores. We identified three DPs: the “Japanese side dish type” (DP1), the “Japanese dish with alcohol type” (DP2), and the “Western dish with alcohol type” (DP3). In men, the single nucleotide polymorphism ALDH2 rs671 was significantly associated with all DP scores. When alcohol intake was added as a covariate, ALDH2 rs671 was still significantly correlated with the DP2 score but not with the DP1 or DP3 score, and alcohol intake was significantly correlated with all DP scores. In women, ALDH2 rs671 was significantly associated with the DP2 and DP3 scores; however, after adding alcohol intake as a covariate, these associations disappeared, and alcohol intake significantly correlated with all DP scores. In conclusion, the ALDH2 genotype was associated with several DPs in elderly adults, but most associations were mediated by alcohol intake.
Transcription activator-like effectors (TALEs) produced by plant pathogenic bacteria mainly belonging to the genus Xanthomonas cause plant diseases through activation of host susceptibility genes in plant cell nuclei. How TALEs enter plant cell nuclei was not clear until recent studies about PthXo1 and TALI, two TALEs produced by Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), the rice (Oryza sativa) pathogens that cause bacterial blight and bacterial leaf streak, respectively. Here, we report that rice importin IMPα1b serves as a nuclear transport receptor in rice plants to facilitate the nuclear import of PthXo1 and TALI from Xoo and Xoc, respectively. While wild-type (WT) rice plants support the nuclear import of PthXo1 and TALI, nuclear trafficking is defective in OsIMPα1b loss-of-function mutants generated by clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated 9 (Cas9)-based gene editing. In the edited plants infected by Xoo, OsIMPα1b sequesters PthXo1 from the nucleus, the PthXo1-targeted rice susceptibility gene is no longer activated, and bacterial virulence and blight disease are alleviated as a result. In the edited plants infected by Xoc, OsIMPα1b sequesters TALI from the nucleus, the role of TALI in suppressing rice defense responses is nullified, and rice defense responses are in turn activated to inhibit bacterial virulence and alleviate bacterial leaf streak severity.
Background Sarcopenia, defined as an age-associated loss of skeletal muscle mass and function, is a major risk factor for requiring long-term care. Because physical activity in adolescence and older age enhances peak muscle function in youth and prevents muscle function decline in older age, older adults with exercise habits during both periods may be at a lower risk for sarcopenia. We investigated the relationship between exercise habits in adolescence and older age and sarcopenia and its components in community-dwelling older Japanese adults. Methods This study included 1607 community-dwelling individuals (aged 65-84, medians 73 years, 679 men and 928 women) with complete health examinations, including measurements of skeletal muscle index, handgrip strength and gait speed, who were enrolled in the Bunkyo Health Study. We divided the participants into four groups according to exercise habits in adolescence and older age: no exercise in either period (none-none; NN), exercise only in adolescence (active-none; AN), exercise only in older age (none-active; NA) and exercise in both periods (active-active; AA). Multivariate-adjusted logistic regression models were used to estimate the odds ratios (ORs) and associated 95% confidence intervals (CIs) in each group for the prevalence of sarcopenia, defined as low muscle mass and low muscle performance, as compared with the NN group. Low muscle performance was defined as low muscle strength and/or low gait speed. Results The total prevalence of sarcopenia was 6.6% (45/679) in men and 1.7% (16/928) in women, the total prevalence of low muscle mass was 14.3% (97/679) in men and 5.2% (48/928) in women, and the total prevalence of low muscle performance was 25.6% (174/679) in men and 19.6% (182/928) in women. In men, the ORs (95% CIs) for sarcopenia, low muscle mass and low muscle performance were significantly lower in the AA group (sarcopenia: 0.29 [0.09-0.95], P = 0.041; low muscle mass: 0.21 [0.09-0.52], P = 0.001; and low muscle performance: 0.52 [0.28-0.97], P = 0.038). In women, the OR (95% CI) for low muscle performance was significantly lower in the AA group than in the other groups (0.48 [0.27-0.84], P = 0.010), whereas none of the ORs for sarcopenia and low muscle mass were significant. Conclusions Older men with exercise habits in both adolescence and older age were at a lower risk of sarcopenia, low muscle mass and low muscle performance, whereas older women with exercise habits at both time periods were at a lower risk of low muscle performance.
Viruses found in the effluent and on the membrane surface during ultrafiltration (UF) processes will introduce hidden biosecurity dangers to drinking water. Fe 3+ coagulation coupled with H 2 O 2 to create an in situ membrane cleaning method, and MS2 bacteriophage was used as a model to investigate virus removal by UF when humic acid (HA) was present. The results showed that MS2 was removed by HA based on size exclusion, hydrophobicity, and electrostatic repulsion. Meanwhile, HA slightly reduced MS2 accumulation on the membrane surface by inhibiting MS2 adsorption. Fe 3+ pretreatment (0.08 mmol/L) eliminated MS2 in the effluent by the adsorption and size exclusion of iron flocs. MS2 retained on the membrane surface was reduced through electrostatic repulsion. Iron flocs-H 2 O 2 cleaning destroyed viral protein capsids through HO• oxidation and eliminated all MS2. The mitigation efficiency of membrane fouling was greatly improved with a flux recovery of 97.8%. Moreover, the use of H 2 O 2 was significantly saved (3%) compared to no Fe 3+ pretreatment (12%). This study provides a potentially useful and economically enhanced membrane cleaning method for virus-containing water treatment by UF, which could not only eliminate viruses and mitigate membrane fouling in the UF system but also reduce the use of membrane cleaning agents to save costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.