The iron−amino acid interactions Fe−O(Glu/Asp), Fe−N(His), and Fe− S(Cys) are the three major iron−ligand bonds in proteins. To compare their properties in proteins, we used atomic force microscopy (AFM)-based single-molecule force spectroscopy to investigate a superoxide reductase (Fe(III)-SOR) with all three types of bonds forming an Fe(His) 4 CysGlu center. We first found that Apo-SOR without bound iron showed multiple unfolding pathways only from the β-barrel core. Then, using Holo-SOR with a ferric ion, we found that a single Fe−O(Glu) bond can tightly connect the flexible N-terminal fragment to the β-barrel and stabilize the whole protein, showing a complete protein unfolding scenario, while the single Fe−N(His) bond was weak and unable to provide such a stabilization. Moreover, when multiple Fe−N bonds are present, a similar stabilization effect can be achieved. Our results showed that the iron−ligand bond modulates protein structure and stability in different modes at the single-bond level.
α3D is a de-novo designed three-helix bundle protein. Like most naturally occurring helical proteins, it is mechanically labile with an unfolding force of <15pN, revealed by atomic force microscopy-based single-molecule...
Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL.
Electronic Supplementary Material
Supplementary material (additional SDS-PAGE, UV-vis, protein sequences, and more experimental methods) is available in the online version of this article at 10.1007/s12274-021-4065-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.