Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal‐free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost‐effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal‐free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided.
Novel Fe(III) clusters grafted Bi2MoO6 nanosheets with surface oxygen vacancies (denoted as F/BMO-SOVs) heterostructured composite have been firstly fabricated via a reliable calcination process combined with impregnation approach. The surface oxygen vacancies (SOVs) in Bi2MoO6 were formed due to controlled calcination process. The presence of Fe (III) clusters was confirmed by HRTEM, XPS, and UV-Vis DRS. Under visible light irradiation, the optimum molar ratio of 15% F/BMO-SOVs achieved 93.4% degradation efficiency of phenol within 180 min, representing nearly 80 times higher activity than the pure Bi2MoO6, confirmed by both absorption spectrum and TOC measurement. The dramatically enhanced photocatalytic activity is attributed to the synergistic effect between the SOVs, Fe(III) clusters and Bi2MoO6, which not only narrows the band gap, improving the visible light response ability, but also facilitates the direct interfacial charge transfer (IFCT) from the SOVs to the surface Fe(III) clusters, greatly promoting the efficient separation of photogenerated electron-hole pairs. According to the trapping experiments and ESR measurements results, •O2-, •OH-, and h + all participated in the phenol photodegradation process over F/BMO-SOVs. Thus this work not only provides a synergistic effect between SOVs, Fe(III) clusters and Bi2MoO6 involving an IFCT process, but also proposes an efficient approach to fabricating highly active photocatalysts in environmental remediation and solar fuel synthesis.
Engineering of defects in semiconductors provides an effective protocol for improving photocatalytic N2 conversion efficiency. This review focuses on the state-of-the-art progress in defect engineering of photocatalysts for the N2 reduction toward ammonia. The basic principles and mechanisms of thermal catalyzed and photon-induced N2 reduction are first concisely recapped, including relevant properties of the N2 molecule, reaction pathways, and NH3 quantification methods. Subsequently, defect classification, synthesis strategies, and identification techniques are compendiously summarized. Advances of in situ characterization techniques for monitoring defect state during the N2 reduction process are also described. Especially, various surface defect strategies and their critical roles in improving the N2 photoreduction performance are highlighted, including surface vacancies (i.e., anionic vacancies and cationic vacancies), heteroatom doping (i.e., metal element doping and nonmetal element doping), and atomically defined surface sites. Finally, future opportunities and challenges as well as perspectives on further development of defect-engineered photocatalysts for the nitrogen reduction to ammonia are presented. It is expected that this review can provide a profound guidance for more specialized design of defect-engineered catalysts with high activity and stability for nitrogen photochemical fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.