In vitro salivary and gastrointestinal (GI) digestion and fermentation of polysaccharides extracted from Dendrobium aphyllum were investigated in this study. Salivary amylase showed no influence on D.aphyllum polysaccharides (DAP). The molecular weight of DAP decreased dramatically during the first 0.5 h of gastric digestion, and then reduced steadily during the subsequent GI tract consumption. The content of reducing sugars increased steadily during GI digestion. Only released free mannose of DAP was detectable by gas chromatography-mass spectrometry analysis during the first 12 h of fermentation, which was contributed by fecal microbiota metabolism. In terms of the fermentation pattern, the pH dropped significantly due to the formation of six types of short-chain fatty acids (SCFAs). This study demonstrates that polysaccharides extracted from D. aphyllum can be digested by the GI tract and are physiologically active in the human large bowel by lowering the pH of the large intestinal environment and promoting the production of SCFAs.
Ever-increasingly Citrus wastes have been generating during the industrial processing, which is troublesome to dispose them for the considerations of economic feasibility and environmental protection. Meanwhile, liver disease, which causes liver damage, is the one of the major threats for the further development of aquaculture, especially in marine fish. The present study explored the hepatoprotective effect of PSCP, a polysaccharide extracted from the pomelo seed coat, in the primary hepatocytes of hybrid grouper (<i>Epinephelus fuscoguttatus</i>♂ × <i>Epinephelus lanceolatus</i>♀). PSCP displayed considerably scavenging effect to the free radicals and strong inhibitive effect to the erythrocyte hemolysis. In vitro, we added PSCP (0, 100, 200 and 400 μg/mL) to the primary hepatocytes before incubation with Acetaminophen (APAP) (12 mM). The CKK-8 experiment displayed the administration of PSCP (100 and 200 μg/mL) substantially mitigated the reduction of hepatocyte viability inflicted by APAP. Moreover, we found that PSCP effectively alleviated APAP-induced oxidative stress, as shown by the significantly reduced level of reactive oxygen species and the elevated enzymatic activities of superoxide dismutase, catalase, and glutathione peroxidase, which indicated its anti-liver injury effect (P<0.05). The more direct signs associating with the hepatoprotection of PSCP are reflected in the results of hematoxylin and eosin staining, as evident by the morphological recovery following the addition of PSCP. In brief, these findings showed that the therapeutic potential of PSCP on APAP-induced fish liver injury, which not only provided a now prospect in treating the liver impairment in aquatic animals, but to also improve the utilization of pomelo fruitlets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.