Rice bacterial leaf streak (BLS) is a serious disease in rice leaves and can seriously affect the quality and quantity of rice growth. Automatic estimation of disease severity is a crucial requirement in agricultural production. To address this, a new method (termed BLSNet) was proposed for rice and BLS leaf lesion recognition and segmentation based on a UNet network in semantic segmentation. An attention mechanism and multi-scale extraction integration were used in BLSNet to improve the accuracy of lesion segmentation. We compared the performance of the proposed network with that of DeepLabv3+ and UNet as benchmark models used in semantic segmentation. It was found that the proposed BLSNet model demonstrated higher segmentation and class accuracy. A preliminary investigation of BLS disease severity estimation was carried out based on our BLS segmentation results, and it was found that the proposed BLSNet method has strong potential to be a reliable automatic estimator of BLS disease severity.
The leaf area index (LAI) is of great significance for crop growth monitoring. Recently, unmanned aerial systems (UASs) have experienced rapid development and can provide critical data support for crop LAI monitoring. This study investigates the effects of combining spectral and texture features extracted from UAS multispectral imagery on maize LAI estimation. Multispectral images and in situ maize LAI were collected from test sites in Tongshan, Xuzhou, Jiangsu Province, China. The spectral and texture features of UAS multispectral remote sensing images are extracted using the vegetation indices (VIs) and the gray-level co-occurrence matrix (GLCM), respectively. Normalized texture indices (NDTIs), ratio texture indices (RTIs), and difference texture indices (DTIs) are calculated using two GLCM-based textures to express the influence of two different texture features on LAI monitoring at the same time. The remote sensing features are prescreened through correlation analysis. Different data dimensionality reduction or feature selection methods, including stepwise selection (ST), principal component analysis (PCA), and ST combined with PCA (ST_PCA), are coupled with support vector regression (SVR), random forest (RF), and multiple linear regression (MLR) to build the maize LAI estimation models. The results reveal that ST_PCA coupled with SVR has better performance, in terms of the VIs + DTIs (R2 = 0.876, RMSE = 0.239) and VIs + NDTIs (R2 = 0.877, RMSE = 0.236). This study introduces the potential of different texture indices for maize LAI monitoring and demonstrates the promising solution of using ST_PCA to realize the combining of spectral and texture features for improving the estimation accuracy of maize LAI.
Accurate prediction of food crop yield is of great significance for global food security and regional trade stability. Since remote sensing data collected from unmanned aerial vehicle (UAV) platforms have the features of flexibility and high resolution, these data can be used as samples to develop regional regression models for accurate prediction of crop yield at a field scale. The primary objective of this study was to construct regional prediction models for winter wheat yield based on multi-spectral UAV data and machine learning methods. Six machine learning methods including Gaussian process regression (GPR), support vector machine regression (SVR) and random forest regression (RFR) were used for the construction of the yield prediction models. Ten vegetation indices (VIs) extracted from canopy spectral images of winter wheat acquired from a multi-spectral UAV at five key growth stages in Xuzhou City, Jiangsu Province, China in 2021 were selected as the variables of the models. In addition, in situ measurements of wheat yield were obtained in a destructive sampling manner for prediction algorithm modeling and validation. Prediction results of single growth stages showed that the optimal model was GPR constructed from extremely strong correlated VIs (ESCVIs) at the filling stage (R2 = 0.87, RMSE = 49.22 g/m2, MAE = 42.74 g/m2). The results of multiple stages showed GPR achieved the highest accuracy (R2 = 0.88, RMSE = 49.18 g/m2, MAE = 42.57 g/m2) when the ESCVIs of the flowering and filling stages were used. Larger sampling plots were adopted to verify the accuracy of yield prediction; the results indicated that the GPR model has strong adaptability at different scales. These findings suggest that using machine learning methods and multi-spectral UAV data can accurately predict crop yield at the field scale and deliver a valuable application reference for farm-scale field crop management.
The speckle noise of synthetic aperture radar (SAR) images limits its application in change detection. Compared with improved ratio (IR) and log-ratio (LR) operators, the neighborhoodbased ratio (NR) technique can restrain the influence of speckle noise and is more suitable for change detection in SAR images. However, we find three drawbacks of NR by analyzing this method carefully. To overcome these defects, we propose an improved neighborhood-based ratio (INR) approach for change detection in SAR images. INR restructures the NR operator to exploit the neighborhood information more reasonably and is expected to reduce the impact of speckle noise better. IR, LR, mean ratio operator, NR, and INR are tested on two data sets to compare their performances in change detection of SAR images. Experimental results show that the proposed method can obtain better difference image than other state-of-art methods and improve the accuracy of change detection in SAR images effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.