After biosynthesis, bacterial lipopolysaccharides (LPS) are transiently anchored to the outer leaflet of the inner membrane (IM). The ATP-binding cassette (ABC) transporter LptBFG extracts LPS molecules from the IM and transports them to the outer membrane. Here we report the crystal structure of nucleotide-free LptBFG from Pseudomonas aeruginosa. The structure reveals that lipopolysaccharide transport proteins LptF and LptG each contain a transmembrane domain (TMD), a periplasmic β-jellyroll-like domain and a coupling helix that interacts with LptB on the cytoplasmic side. The LptF and LptG TMDs form a large outward-facing V-shaped cavity in the IM. Mutational analyses suggest that LPS may enter the central cavity laterally, via the interface of the TMD domains of LptF and LptG, and is expelled into the β-jellyroll-like domains upon ATP binding and hydrolysis by LptB. These studies suggest a mechanism for LPS extraction by LptBFG that is distinct from those of classical ABC transporters that transport substrates across the IM.
BackgroundReconstruction of the aortic major branches during thoracic endovascular aortic repair is complicated because of the complex anatomic configuration and variation of the aortic arch. In situ laser fenestration has shown great potential for the revascularization of aortic branches. This study aims to evaluate the feasibility, effectiveness, and safety of in situ laser fenestration on the three branches of the aortic arch during thoracic endovascular aortic repair.Methods and ResultsBefore clinical application, the polytetrafluoroethylene and Dacron grafts were fenestrated by an 810‐nm laser system ex vivo, which did not damage the bare metal portion of the endografts and created a clean fenestration while maintaining the integrity of the endografts. In vivo, 6 anesthetized female swine survived after this operation, including stent‐graft implantation in the aortic arches, laser fenestration, and conduit implantation through the innominate arteries and the left carotid arteries. Based on the animal experiments, in situ laser fenestration during thoracic endovascular aortic repair was successively performed on 24 patients (aged 33–86 years) with aortic artery diseases (dissection type A: n=4, type B: n=7, aneurysm: n=2, mural thrombus: n=7). Fenestration of 3 aortic branches was performed in 2 (8.3%) patients. Both the left carotid artery and the left subclavian artery were fenestrated in 6 (25%) patients. Only left subclavian artery fenestration surgery was done in 16 (66.7%) patients. Among these patients, 1 fenestration was abandoned secondary to an acute takeoff of the innominate artery in a type III aortic arch. The average operative time was 137±15 minutes. The technical success rate was 95.8% (n=23). No fenestration‐related complications or neurological morbidity occurred after this operation. During a mean postoperative 10‐month follow‐up (range: 2–17 months), 1 patient died of severe pneumonia, and all the left subclavian artery and carotid artery stents were patent with no fenestration‐related endoleaks upon computed tomography angiography images.ConclusionsIn situ laser fenestration is a feasible, effective, rapid, repeatable, and safe option for the reconstruction of aortic arch during thoracic endovascular aortic repair, which might be available to revascularize the 3 branches. However, follow‐up periods should be extended to evaluate the robustness of this technique.
Atherosclerosis is one of the most common type of cardiovascular disease and the prime cause of mortality in the aging population worldwide. However, the detail mechanisms and special biomarkers of atherosclerosis remain to be further investigated. Lately, long non-coding RNAs (lncRNAs) has attracted much more attention than other types of ncRNAs. In our work, we found and confirmed differently expressed lncRNAs and mRNAs in atherosclerosis by analyzing GSE28829. We performed the weighted gene co-expression network analysis (WGCNA) by analyzing GSE40231 to confirm highly correlated genes. Gene Ontology (GO) analysis were utilized to assess the potential functions of differential expressed lncRNAs in atherosclerosis. Co-expression networks were also constructed to confirm hub lncRNAs in atherosclerosis. A total of 5784 mRNAs and 654 lncRNAs were found to be dysregulated in the progression of atherosclerosis. A total of 15 lncRNA-mRNA co-expression modules were identified in this study based on WGCNA analysis. Moreover, a few lncRNAs, such as ZFAS1, LOC100506730, LOC100506691, DOCK9-AS2, RP11-6I2.3, LOC100130219, were confirmed as important lncRNAs in atherosclerosis. Taken together, bioinformatics analysis revealed these lncRNAs were involved in regulating the leukotriene biosynthetic process, gene expression, actin filament organization, t-circle formation, antigen processing, and presentation, interferon-gamma-mediated signaling pathway, and activation of GTPase activity. We believed that this study would provide potential novel therapeutic and prognostic targets for atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.