Graphene‐like two‐dimensional (2D) nanomaterials have many unique properties in diverse fields, but the synthesis method of graphene‐like CuS 2D nanomaterials is rarely studied. In this work, we reported that the CuS flower‐like superstructure microspheres with a solid core (CuS‐FSMs) were prepared by a facile hydrolysis method without a template or surfactant. The novel CuS‐FSM material showed a well‐define solid core of approximately 300–500 nm and a loose shell of 0.5–1 μm. More importantly, the loose shell of the CuS‐FSMs was constructed of graphene‐like CuS nanosheets (CuS‐GN). The formation mechanism indicated that the CuS‐FSMs were firstly formed on the surface of hexagonal prism‐shaped Cu3(TAA)3Cl3 precursors, and then the well‐defined solid core was produced through the Ostwald ripening of CuS‐GN. The electrocatalytic oxygen evolution reaction was employed as a probe reaction to gain insight into the properties of CuS‐FSMs, which exhibited a high limiting current density of 92.4 mA cm−2 and stability in 1 M KOH electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.