12Cr heat-resistant steels with different concentrations of Co and W, with Mo equivalent (Mo + 1/2W) fixed at 1.6 wt.%, were prepared by arc-melting and hot rolling processes. Mechanical properties were evaluated by tensile tests conducted at a low strain rate 2 3 10 25 s 21 at 575, 600, and 625°C. Microstructure of the steels was investigated via optical microscopy (OM) and electron transmission microscopy (TEM). The results show that when the content of W is fixed, the steel with 3.1 wt.% Co and the steel with 3.8 wt.% Co are found to obtain the best deformation resistance values at 575, 600, and at 625°C; when the Co content is fixed, the steel with 1.5 wt.% W shows better performance. The highest ultimate tensile strength (UTS) and yield stress (YS) were achieved for the steel when its W content is at 1.5 wt.% and Co content is at 3.1 wt.% or 3.8 wt.%. Deformation resistance is related to the initial dislocation density in the steels, which increases with increasing Co content and decreases with increasing W content. It is verified that the deformation mechanism of the tested steels during high-temperature tensile tests at a low strain rate is that of the recovery-controlled dislocation creep. Furthermore, the thermodynamic calculation result is in agreement with the experimental result, demonstrating that 0.85Mo-1.5W-3.8Co steel has the best deformation resistance at 625°C. Therefore, 0.85Mo-1.5W-3.1Co steel is recommended as a potential candidate material for 600°C class steam turbines, and 0.85Mo-1.5W-3.8Co steel is also a potential material for 625°C class Ultra supercritical (USC) steam turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.