Binding of short antigenic peptides to major histocompatibility complex (MHC) molecules is a core step in adaptive immune response. Precise identification of MHC-restricted peptides is of great significance for understanding the mechanism of immune response and promoting the discovery of immunogenic epitopes. However, due to the extremely high MHC polymorphism and huge cost of biochemical experiments, there is no experimentally measured binding data for most MHC molecules. To address the problem of predicting peptides binding to these MHC molecules, recently computational approaches, called pan-specific methods, have received keen interest. Pan-specific methods make use of experimentally obtained binding data of multiple alleles, by which binding peptides (binders) of not only these alleles but also those alleles with no known binders can be predicted. To investigate the possibility of further improvement in performance and usability of pan-specific methods, this article extensively reviews existing pan-specific methods and their web servers. We first present a general framework of pan-specific methods. Then, the strategies and performance as well as utilities of web servers are compared. Finally, we discuss the future direction to improve pan-specific methods for MHC-peptide binding prediction.
In this technical note, we describe a facile method for one-step fabrication of paper-based microfluidic devices, by simply using commercially available permanent markers and metal templates with specific patterns. The fabrication process involves only a single step of plotting pattern in paper; it can be typically finished within 1 min. The ink marks formed in the patterned paper will act as the hydrophobic barriers to define the hydrophilic flow paths or separate test zones. Various paper devices can be created by using different templates with corresponding patterns. Transparent adhesive tape-sandwiched devices could protect their assay surfaces from potential contamination. In the proof-of-concept experiments, circular paper test zones (∼3 mm diameter) were fabricated for colorimetric and quantification detection of prostate-specific antigen (PSA) as a model target, based on dotimmunogold staining assays coupled with gold enhancement amplification. Several serum specimens were additionally evaluated with this new approach and the results were compared with the commercial chemiluminescence immunoassay, validating its feasibility of practical applications. Such a one-step plotting method for paper patterning does not require any specialized equipments and skills, is quite inexpensive and rapid, and thus holds great potential to find wide applications especially in remote regions and resource-limited environments such as small laboratories and private clinics.
MotivationAccurate identification of peptides binding to specific Major Histocompatibility Complex Class II (MHC-II) molecules is of great importance for elucidating the underlying mechanism of immune recognition, as well as for developing effective epitope-based vaccines and promising immunotherapies for many severe diseases. Due to extreme polymorphism of MHC-II alleles and the high cost of biochemical experiments, the development of computational methods for accurate prediction of binding peptides of MHC-II molecules, particularly for the ones with few or no experimental data, has become a topic of increasing interest. TEPITOPE is a well-used computational approach because of its good interpretability and relatively high performance. However, TEPITOPE can be applied to only 51 out of over 700 known HLA DR molecules.MethodWe have developed a new method, called TEPITOPEpan, by extrapolating from the binding specificities of HLA DR molecules characterized by TEPITOPE to those uncharacterized. First, each HLA-DR binding pocket is represented by amino acid residues that have close contact with the corresponding peptide binding core residues. Then the pocket similarity between two HLA-DR molecules is calculated as the sequence similarity of the residues. Finally, for an uncharacterized HLA-DR molecule, the binding specificity of each pocket is computed as a weighted average in pocket binding specificities over HLA-DR molecules characterized by TEPITOPE.ResultThe performance of TEPITOPEpan has been extensively evaluated using various data sets from different viewpoints: predicting MHC binding peptides, identifying HLA ligands and T-cell epitopes and recognizing binding cores. Among the four state-of-the-art competing pan-specific methods, for predicting binding specificities of unknown HLA-DR molecules, TEPITOPEpan was roughly the second best method next to NETMHCIIpan-2.0. Additionally, TEPITOPEpan achieved the best performance in recognizing binding cores. We further analyzed the motifs detected by TEPITOPEpan, examining the corresponding literature of immunology. Its online server and PSSMs therein are available at http://www.biokdd.fudan.edu.cn/Service/TEPITOPEpan/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.