In this technical note, we describe a facile method for one-step fabrication of paper-based microfluidic devices, by simply using commercially available permanent markers and metal templates with specific patterns. The fabrication process involves only a single step of plotting pattern in paper; it can be typically finished within 1 min. The ink marks formed in the patterned paper will act as the hydrophobic barriers to define the hydrophilic flow paths or separate test zones. Various paper devices can be created by using different templates with corresponding patterns. Transparent adhesive tape-sandwiched devices could protect their assay surfaces from potential contamination. In the proof-of-concept experiments, circular paper test zones (∼3 mm diameter) were fabricated for colorimetric and quantification detection of prostate-specific antigen (PSA) as a model target, based on dotimmunogold staining assays coupled with gold enhancement amplification. Several serum specimens were additionally evaluated with this new approach and the results were compared with the commercial chemiluminescence immunoassay, validating its feasibility of practical applications. Such a one-step plotting method for paper patterning does not require any specialized equipments and skills, is quite inexpensive and rapid, and thus holds great potential to find wide applications especially in remote regions and resource-limited environments such as small laboratories and private clinics.
In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.
Microfluidic paper-based analytical devices (μPADs) are a growing class of low-cost chemo/biosensing technologies designed for point-of-use applications. In this article, we describe MTWP (movable-type wax printing), a facile method for the fabrication of μPADs. MTWP is inspired by the Chinese movable-type printing and requires only a hot plate and homemade small iron movable components. It is able to pattern various wax microstructures in paper via a simple adjustment of the number, patterning forms or types of the metal movable components. This inexpensive and versatile method may thus hold great potential for producing wax-patterned μPADs by untrained operators at minimized cost in developing countries. In addition, two novel equipment-free assay methods are further developed to render μPAD measurements straightforward and quantitative. They use the flow-through time of a detection reagent in a three-dimensional paper device and the number of colored detection microzones in a 24-zone paper device as the detection motifs. The timing method is based on the selective wettability change of paper from hydrophilic to hydrophobic that is mediated by enzymatic reactions. The counting method is carried out on the basis of oxidation-reduction reactions of a colored substance, namely iodine. Their utility is demonstrated with quantitative detection of hydrogen peroxide as a model analyte. These methods require only a timer or a cell phone with a timing function and the abilities of seeing color and of counting for quantitative μPAD measurement, thus making them simple, cost-efficient, and useful sensor technologies for a great diversity of point-of-need applications especially in resource-poor settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.