An urban agglomeration is the engine of regional and national economic growth, but also causes many ecological and environmental issues that emerge from massive land changes. In this study, the spatiotemporal evolution of an urban agglomeration was quantified and its impacts on the urban and regional landscape patterns were evaluated. It showed that the urbanized land area of the Pearl River Delta Urban Agglomeration (PRDUA) in China nearly quadrupled, having linearly increased from 1819.8 km2 to 7092.2 km2 between 1985 and 2015. The average annual growth rate presented a bimodal wave-like pattern through time, indicating that the PRDUA has witnessed two rounds of the urbanization process. The growth modes (e.g., leapfrog, edge-expansion, infilling) were detected and they exhibited co-existing but alternating dominating patterns during urbanization, demonstrating that the spatiotemporal evolution of the urban development of the PRDUA follows the “spiral diffusion-coalescence” hypothesis. The morphology of the PRDUA presented an alternating dispersal-compact pattern over time. The city-level and regional-level landscape patterns changed synchronously with the spatiotemporal evolution of the PRDUA over time. The urbanization of the PRDUA increased both the complexity and aggregation of the landscape, but also resulted in an increasing fragmentation and decreasing connectivity of the natural landscape in the Pearl River Delta region. These findings are helpful for better understanding how urban agglomerations evolve and in providing insights for regional urban planning and sustainable land management.
<abstract> <p>We studied the effects of the aspheric transition zone on the optical wavefront aberrations, corneal surface displacement, and stress induced by the biomechanical properties of the cornea after conventional laser in situ keratomileusis (LASIK) refractive surgery. The findings in this study can help improve visual quality after refractive surgery. Hyperopia correction in 1-5D was simulated using five types of aspheric transition zones with finite element modeling. The algorithm for the simulations was designed according to the optical path difference. Wavefront aberrations were calculated from the displacements on the anterior and posterior corneal surfaces. The vertex displacements and stress on the corneal surface were also evaluated. The results showed that the aspheric transition zone has an effect on the postoperative visual quality. The main wavefront aberrations on the anterior corneal surface are defocus, y-primary astigmatism, x-coma, and spherical aberrations. The wavefront aberrations on the corneal posterior surface were relatively small and vertex displacements on the posterior corneal surface were not significantly affected by the aspheric transition zone. Stress analysis revealed that the stress on the cutting edge of the anterior corneal surface decreased with the number of aspheric transition zone increased, and profile #1 resulted in the maximum stress. The stress on the posterior surface of the cornea was more concentrated in the central region and was less than that on the anterior corneal surface overall. The results showed that the aspheric transition zone has an effect on postoperative aberrations, but wavefront aberrations cannot be eliminated. In addition, the aspheric transition zone influences the postoperative biomechanical properties of the cornea, which significantly affect the postoperative visual quality.</p> </abstract>
A customized myopic refractive surgery was simulated by establishing a finite element model of the human eye,after which we studied the wavefront aberrations induced by biomechanical effects and ablation profile after wavefrontguided LASIK surgery.Methods: Thirty myopia patients (i.e., 60 eyes) without other eye diseases were selected. Their ages, preoperative spherical equivalent, astigmatism, and wavefront aberration were then obtained, in addition to the mean spherical equivalent error range -4 to -8D. Afterward, wavefront-guided customized LASIK surgery was simulated by establishing a finite element eye model, followed by the analysis of the wavefront aberrations induced by the surface displacement from corneal biomechanical effects, as well as customized ablation profile. Finally, the preoperative and induced aberrations were statistically analyzed.Results: Comatic aberrations were the main wavefront abnormality induced by biomechanical effects, and the wavefront aberrations induced by the ablation profile mainly included coma and secondary-coma, as well as sphere and secondarysphere aberrations. Overall, the total high-order aberrations (tHOAs), total coma (C 31 ), and sphere ( 0 4 C ) increased after wavefront-guided customized LASIK surgery. According to our correlation analyses, coma, sphere, and total high-order aberrations were significantly correlated with decentration. Additionally, the material parameters of ocular tissue were found to affect the postoperative wavefront aberrations. When the material parameters of the sclera remained constant but those of cornea increased, the induced wavefront aberrations were reduced. Conclusion:All biomechanical effects of cornea and ablation profile had significant effects on postoperative wavefront aberrations after customized LASIK refractive surgery; however, the effects of the ablation profile were more notorious.Additionally,the characteristics of biomechanical materials have influence on the clinical correction effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.