It is well known that azimuthal spin wave modes of magnetic vortex state in permalloy nanodisks have circular symmetry. Intuitively, magnetic materials having magnetocrystalline anisotropy is not compatible with the circular symmetry of the azimuthal modes. In this article, however, we report cubic azimuthal modes in heterogeneous nanodisks consisting of a permalloy core and a Fe shell. The fourfold symmetry of azimuthal modes is due to the exchange, and magneto-static, interactions between the permalloy core and the Fe shell. In comparison to results of circular azimuthal mode, the vortex switching occurs considerably faster under the excitation of cubic azimuthal mode. The gyration path of vortex core turns into square under the influence of induced cubic anisotropy in the Py region. We find out periodic oscillation of the vortex core size and the gyration speed as well. Our findings may offer a new route for spintronic applications using heterogeneous magnetic nanostructures.
We investigated the spin dynamics of a vortex state in a core-shell magnetic nanodisk driven by an oscillating field applied perpendicular to the disk plane by means of micromagnetic simulations. The nanodisk comprises a Py (Fe 0.2 Ni 0.8 ) core of 100 nm in radius, surrounded by a 50 nm thick Fe shell.Fourier transform analyses show that the Py core and the Fe shell dominate spin-wave oscillation at the fundamental and higher order radial modes, respectively. For oscillating driving field tuned to the fundamental eigenfrequency, the Py/Fe interface effectively confines spin-wave excitation in the Py core region. This effect leads to significantly more rapid vortex core (VC) reversal in comparison to homogeneous disks. Our work demonstrates that the higher order modes can drive much faster VC reversal than the fundamental mode, in sharp contrast to the results obtained in homogeneous disks. With excitation levels up to 30 mT, we find strong nonlinear spin-wave dynamics in the system, which results in mode frequency redshifting, therefore the observation of the most rapid VC reversals below eigenfrequencies and VC switching in wide ranges of frequencies.
Graphene, with its two linearly dispersing Dirac points with opposite windings, is the minimal topological nodal configuration in the hexagonal Brillouin zone. Topological semimetals with higher-order nodes beyond the Dirac points have recently attracted considerable interest due to their rich chiral physics and their potential for the design of next-generation integrated devices. Here we report the experimental realization of the topological semimetal with quadratic nodes in a photonic microring lattice. Our structure hosts a robust second-order node at the center of the Brillouin zone and two Dirac points at the Brillouin zone boundary—the second minimal configuration, next to graphene, that satisfies the Nielsen–Ninomiya theorem. The symmetry-protected quadratic nodal point, together with the Dirac points, leads to the coexistence of massive and massless components in a hybrid chiral particle. This gives rise to unique transport properties, which we demonstrate by directly imaging simultaneous Klein and anti-Klein tunnelling in the microring lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.