In this study, the ovarian tissues of Large White pigs were mined for novel circular RNAs (circRNAs), following which, their molecular characteristics and potential mechanisms for fertility regulation were examined. RNA sequencing was used for transcriptome analysis of ovarian follicles and corpora lutea in Large White sows with high (H) and low (L) fertility during the follicular (F) and luteal (L) phases of the estrous cycle. In total, 21,386 circRNA derived from 4535 host genes were identified. Differentially expressed circRNAs were detected in the LH vs. LL (1079) and in the FH vs. FL (1077) comparisons, and their host genes were enriched in steroid biosynthesis and forkhead box O (FOXO), thyroid hormone, cell cycle, and tumor growth factor (TGF)-beta signaling pathways. Protein–protein interaction networks were constructed on the basis of the host genes that were significantly enriched in pathways related to reproductive processes, with AKT3 and PP2CB serving as the hub genes in the networks of the LH vs. LL and FH vs. FL comparisons, respectively. The microRNA (miRNA) binding sites of the differentially expressed circRNAs were predicted, and 128 (LH vs. LL) and 113 (FH vs. FL) circRNA–miRNA pairs were identified. Finally, circRNA–miRNA negative regulatory networks were established on the basis of the gene expression profiles and bioinformatic analyses. In the current study, differentially expressed circRNAs were observed in ovarian tissues between the H and L fertility groups in both F and L phases of the estrous cycle, which suggested roles in pig fertility regulation. These findings provide new clues for elucidating fertility differences in pigs.
Background
Improving sow fertility is extremely important as it can lead to increased reproductive efficiency and thus profitability for swine producers. There are considerable differences in fertility rates among individual animals, but the underlying molecular mechanisms remain unclear. In this study, by using different types of RNA libraries, we investigated the complete transcriptome of ovarian tissue during the luteal (L) and follicular (F) phases of the estrous cycle in Large White pigs with high (H) and low (L) fecundity, and performed a comprehensive analysis of long noncoding RNAs (lncRNAs), mRNAs and micro RNAs (miRNAs) from 16 samples by combining RNA sequencing (RNA-seq) with bioinformatics.
Results
In total, 24,447 lncRNAs, 27,370 mRNAs, and 216 known miRNAs were identified in ovarian tissues. The genomic features of lncRNAs, such as length distribution and number of exons, were further analyzed. We selected a threshold of P < 0.05 and |log2 (fold change)| ≥ 1 to obtain the differentially expressed lncRNAs, miRNAs and mRNAs by pairwise comparison (LH vs. LL, FH vs. FL). Bioinformatics analysis of these differentially expressed RNAs revealed multiple significantly enriched pathways (P < 0.05) that were closely involved in the reproductive process, such as ovarian steroidogenesis, lysosome, steroid biosynthesis, and the estrogen and GnRH signaling pathways. Moreover, bioinformatics screening of differentially expressed miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets were performed. Finally, we constructed lncRNA–miRNA–mRNA regulation networks. The key genes in these networks were verified by Reverse Transcription Real-time Quantitative PCR (RT-qRCR), which were consistent with the results from RNA-Seq data.
Conclusions
These results provide further insights into the fertility of pigs andcan contribute to further experimental investigation of the functions of these genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.