Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey design. This paper clustered 854,712 vehicles in a week using K-means clustering algorithm based on license plate recognition (LPR) data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spatial variability and activity patterns are used to identify homogeneous clusters. Then, Davies-Bouldin index (DBI) and Silhouette Coefficient (SC) are applied to capture the optimal number of groups and, consequently, six groups are classified in weekdays and three groups are sorted in weekends, including commuting vehicles and some other occasional leisure travel vehicles. Moreover, a detailed analysis of the characteristics of each group in terms of spatial travel patterns and temporal changes are presented. This study highlights the possibility of applying LPR data for discovering the underlying factor in vehicle travel patterns and examining the characteristic of some groups specifically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.