Photo-crosslinkable gelatin methacrylate (GelMA) has become an attractive ink in 3D printing due to its excellent biological performance. However, limited by low viscosity and long cross-linking time, it is still a challenge to directly print GelMA by extrusion-based 3D printing. Here, to balance the printability and biocompatibility, biomaterial ink composed of GelMA and nanoclay was specially designed. Using this ink, complex scaffolds with high shape fidelity can be easily printed based on the thixotropic property of nanoclay. In this study, we tried to answer some basic printing-required questions of this ink, including the printability window, general properties (porosity, mechanical strength, et al), and biocompatibility. We found that the GelMA/Nanoclay ink enabled printing complex 3D scaffolds, such as a bionic ear and a branched vessel. Furthermore, the addition of nanoclay improved the porosity, increased the mechanical strength, reduced the degradation ratio, and maintained a good biocompatibility of the printed scaffolds. Therefore, this method offers an easy way to print complex scaffolds with good shape fidelity and biological performance, and it might open up new potential applications for the customized therapy of tissue defects.
Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.
Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize grapheneʼs MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ −10 dB) reaches 5.59 GHz and the minimum reflection loss is up to −42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40–50 mg cm−3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.
Electronic supplementary materialThe online version of this article (10.1007/s40820-017-0179-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.