Hybrid organic-inorganic perovskites (e.g., CH3NH3PbI3) are promising light absorbers for the third-generation photovoltaics. Herein we demonstrate a modified two-step deposition method to fabricate a uniform CH3NH3PbI3 capping layer with high-coverage and thickness of 300 nm on top of the mesoporous TiO2. The CH3NH3PbI3 layer shows high light-harvesting efficiency and long carrier lifetime over 50 ns. On the basis of the as-prepared film, TiO2/CH3NH3PbI3 heterojunction solar cells achieve a power conversion efficiency of 10.47% with a high open-circuit voltage of 948 mV, the highest recorded to date for hole-transport-material-free (HTM-free) perovskite-based heterojunction cells. The efficiency exceeding 10% shows promising prospects for the HTM-free solar cells based on organic lead halides.
Al-doped ZnO (AZO) modified ZnO nanorods have been applied in CH3NH3PbI3 perovskite solar cells, which can show a positive effect on open circuit voltage and power conversion efficiency. The average power conversion efficiency is improved from 8.5% to 10.07% and the maximum efficiency reaches 10.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.