Proton conduction is an important property for fuel cell electrolytes. The search for molecular details on proton transport is an ongoing quest. Here, we show that in hydrated yttrium doped barium zirconate using X-ray and neutron diffraction that protons tend to localize near the dopant yttrium as a conjugated superstructure. The proton jump time measured using quasi-elastic neutron scattering follows the Holstein-Samgin polaron model, revealing that proton hopping is weakly coupled to the high-frequency O-H stretching motion, but strongly coupled to low-frequency lattice phonons. The ratio of the proton polaron effective mass, m*, and the proton mass is m*/m = 2, when coupled to the Zr-O stretching mode, giving experimental evidence of proton pairing in perovskites, as a result of proton-phonon coupling. Possible pathways of a proton pair are provided through Nudge Elastic Band calculations. The pairing of protons, when jumping, is discussed in context of a cooperative protonic charge transport process.
The multiplicative noise removal problem has received considerable attention recently. To solve this problem, various variational models have been proposed, which minimise an energy functional composed of the data term and the regularisation term. Regarding the regularisation term, a first-order model is frequently used to remove multiplicative noise, which may cause staircase effect and loss of contrast in the output image. In this study, the authors use a second-order model, the total curvature (TC), to solve the above problem. The TC model has the benefit of removing the staircase effect and maintaining image edges, contrasts and corners. The augmented Lagrange method is utilised to solve the proposed TC model by introducing auxiliary variables, Lagrange multipliers and using alternating optimisation strategy. In each loop of optimisation, the fast Fourier transform, generalised soft threshold formulas, projection method and gradient descent method are integrated effectively. The experimental results show that the TC model can effectively remove staircase effect and preserve smoothness, via comparison with the first-order model (total variation regularisation and Perona-Malik regularisation). Furthermore, the TC model is better than another second-order model based on bounded Hessian regularisation in preserving contrast and corner. 2 Related works A typical variational model is composed of the data term and the regularisation term. The data term represents the relationship
Background Cerebral palsy (CP) is a physical disability that affects movement and posture. Approximately 17 million people worldwide and 34,000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers are the most commonly used clinical tools to measure joint angles and positions in children with CP. Objective This paper presents collaborative research between the School of Electrical Engineering, Computing and Mathematical Sciences at Curtin University and a team of clinicians in a multicenter randomized controlled trial involving children with CP. This study aims to develop a digital solution for mass data collection using inertial measurement units (IMUs) and the application of machine learning (ML) to classify the movement features associated with CP to determine the effectiveness of therapy. The results were calculated without the need to measure Euler, quaternion, and joint measurement calculation, reducing the time required to classify the data. Methods Custom IMUs were developed to record the usual wrist movements of participants in 2 age groups. The first age group consisted of participants approaching 3 years of age, and the second age group consisted of participants approaching 15 years of age. Both groups consisted of participants with and without CP. The IMU data were used to calculate the joint angle of the wrist movement and determine the range of motion. A total of 9 different ML algorithms were used to classify the movement features associated with CP. This classification can also confirm if the current treatment (in this case, the use of wrist extension) is effective. Results Upon completion of the project, the wrist joint angle was successfully calculated and validated against Vicon motion capture. In addition, the CP movement was classified as a feature using ML on raw IMU data. The Random Forrest algorithm achieved the highest accuracy of 87.75% for the age range approaching 15 years, and C4.5 decision tree achieved the highest accuracy of 89.39% for the age range approaching 3 years. Conclusions Anecdotal feedback from Minimising Impairment Trial researchers was positive about the potential for IMUs to contribute accurate data about active range of motion, especially in children, for whom goniometric methods are challenging. There may also be potential to use IMUs for continued monitoring of hand movements throughout the day. Trial Registration Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12614001276640, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367398; ANZCTR ACTRN12614001275651, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367422
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.