SCCmec in MRSA is acknowledged to be of importance not only because it contains the mecA or mecC gene but also for staphylococcal adaptation to different environments, e.g., in hospitals, the community, and livestock. Typing of SCCmec by PCR techniques has, because of its heterogeneity, been challenging, and whole-genome sequencing has only partially solved this since no good bioinformatic tools have been available. In this article, we describe the development of a new bioinformatic tool, SCCmecFinder, that includes most of the needs for infection control professionals and researchers regarding the interpretation of SCCmec elements. The software detects all of the SCCmec elements accepted by the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements, and users will be prompted if diverging and potential new elements are uploaded. Furthermore, SCCmecFinder will be curated and updated as new elements are found and it is easy to use and freely accessible.
We describe clonal shifts in
vanA Enterococcus faecium
isolates from clinical samples obtained from patients in Denmark from 2015 to the first quarter (Q1) of 2019. During Q1 2019, the vancomycin-variable enterococci (VVE) ST1421-CT1134
vanA E. faecium
became the most dominant
vanA E. faecium
clone and has spread to all five regions in Denmark. Among 174
E. faecium
isolates with
vanA, vanB
or vanA/
vanB
genes in Q1 2019, 44% belonged to this type.
ObjectivesWe unexpectedly identified MRSA isolates carrying mecC (mecC-MRSA) from a Danish swine farm located in eastern Zealand. The objective of the present study was to investigate the origin of these isolates and their genetic relatedness to other mecC-MRSA isolates from Zealand.MethodsWGS was used to infer the phylogenetic relationship between 19 identified mecC-MRSA isolates from the swine farm and 34 additional epidemiologically unrelated human isolates from the same geographical region of Denmark. Variations in the accessory genome were investigated by bioinformatics tools, and antibiotic susceptibility profiles were assessed by MIC determination.ResultsmecC-MRSA was isolated from a domestic swine farm, but not from cattle reared at the same farm. Phylogenetic analysis revealed that all mecC-MRSA isolates from both farm animals and workers formed a separate cluster, whereas human isolates from the same municipality belonged to a closely related cluster. Analysis of the accessory genome supported this relationship.ConclusionsTo the best of our knowledge, this is the first report of mecC-MRSA isolated from domestic swine. The investigation strongly indicates that transmission of mecC-MRSA has taken place on the swine farm between the farmers and swine. The close clustering of farm isolates and isolates from the same municipality suggests a local transmission of mecC-MRSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.