Basquin's law of fatigue states that the lifetime of the system has a power-law dependence on the external load amplitude, tf approximately sigma 0- alpha, where the exponent alpha has a strong material dependence. We show that in spite of the broad scatter of the exponent alpha, the fatigue fracture of heterogeneous materials exhibits universal features. We propose a generic scaling form for the macroscopic deformation and show that at the fatigue limit the system undergoes a continuous phase transition. On the microlevel, the fatigue fracture proceeds in bursts characterized by universal power-law distributions. We demonstrate that the system dependent details are contained in Basquin's exponent for time to failure, and once this is taken into account, remaining features of failure are universal.
We study the brittle fragmentation of spheres by using a three-dimensional discrete element model. Large scale computer simulations are performed with a model that consists of agglomerates of many particles, interconnected by beam-truss elements. We focus on the detailed development of the fragmentation process and study several fragmentation mechanisms. The evolution of meridional cracks is studied in detail. These cracks are found to initiate in the inside of the specimen with quasiperiodic angular distribution. The fragments that are formed when these cracks penetrate the specimen surface give a broad peak in the fragment mass distribution for large fragments that can be fitted by a two-parameter Weibull distribution. This mechanism can only be observed in three-dimensional models or experiments. The results prove to be independent of the degree of disorder in the model. Our results significantly improve the understanding of the fragmentation process for impact fracture since besides reproducing the experimental observations of fragment shapes, impact energy dependence, and mass distribution, we also have full access to the failure conditions and evolution.
We investigate the impact fragmentation of spherical solid bodies made of heterogeneous brittle materials by means of a discrete element model. Computer simulations are carried out for four different system sizes varying the impact velocity in a broad range. We perform a finite size scaling analysis to determine the critical exponents of the damage-fragmentation phase transition and deduce scaling relations in terms of radius R and impact velocity v(0). The scaling analysis demonstrates that the exponent of the power law distributed fragment mass does not depend on the impact velocity; the apparent change of the exponent predicted by recent simulations can be attributed to the shifting cutoff and to the existence of unbreakable discrete units. Our calculations reveal that the characteristic time scale of the breakup process has a power law dependence on the impact speed and on the distance from the critical speed in the damaged and fragmented states, respectively. The total amount of damage is found to have a similar behavior, which is substantially different from the logarithmic dependence on the impact velocity observed in two dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.