An object-based image retrieval method is addressed in this paper. For that purpose, a new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and textural features are extracted from each pixel in the image and these features are used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terms of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In the retrieval case, two comparing schemes are proposed. Comparisons between one query object and multi-objects of a database image and comparisons between multi-query objects and multi-objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into the database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.