Theνe − e − elastic scattering cross-section was measured with a CsI(Tl) scintillating crystal array having a total mass of 187 kg. The detector was exposed to an average reactorνe flux of 6.4 × 10 12 cm −2 s −1 at the Kuo-Sheng Nuclear Power Station. The experimental design, conceptual merits, detector hardware, data analysis and background understanding of the experiment are presented. Using 29882/7369 kg-days of Reactor ON/OFF data, the Standard Model (SM) electroweak interaction was probed at the squared 4-momentum transfer range of Q 2 ∼ 3 × 10 −6 GeV 2 . The ratio of experimental to SM cross-sections of ξ = [1.08 ± 0.21(stat) ± 0.16(sys)] was measured. Constraints on the electroweak parameters (gV , gA) were placed, corresponding to a weak mixing angle measurement of sin 2 θW = 0.251 ± 0.031(stat ) ± 0.024(sys ). Destructive interference in the SMνe−e process was verified. Bounds on anomalous neutrino electromagnetic properties were placed: neutrino magnetic moment at µν e < 2.2 × 10 −10 µB and the neutrino charge radius at −2.1 × 10 −32 cm 2 < r 2 νe < 3.3 × 10 −32 cm 2 , both at 90% confidence level.
By using observables that only depend on charged particles (tracks), one can efficiently suppress pile-up contamination at the LHC. Such measurements are not infrared safe in perturbation theory, so any calculation of track-based observables must account for hadronization effects. We develop a formalism to perform these calculations in QCD, by matching partonic cross sections onto new nonperturbative objects called track functions which absorb infrared divergences. The track function Ti(x) describes the energy fraction x of a hard parton i which is converted into charged hadrons. We give a field-theoretic definition of the track function and derive its renormalization group evolution, which is in excellent agreement with the Pythia parton shower. We then perform a next-toleading order calculation of the total energy fraction of charged particles in e + e − → hadrons. To demonstrate the implications of our framework for the LHC, we match the Pythia parton shower onto a set of track functions to describe the track mass distribution in Higgs plus one jet events. We also show how to reduce smearing due to hadronization fluctuations by measuring dimensionless track-based ratios.
We calculate the one-loop anomalous dimension matrix for the dimension-six baryon number violating operators of the Standard Model effective field theory, including right-handed neutrino fields. We discuss the flavor structure of the renormalization group evolution in the contexts of minimal flavor violation and unification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.