Ruthenium(II)−isocyanide complexes bearing cyclic tridentate amine/thioether (1,4,7-trimethyl-1,4,7-triazacyclononane, Me3Tacn/1,4,7-trithiacyclononane, [9]aneS3) and aromatic diimine (1,10-phenanthroline, phen/2,2′-bipyridine, bpy) have been prepared. The molecular structures of [(Me3Tacn)(bpy)Ru(t-BuNC)]2+, [([9]aneS3)(phen)Ru(t-BuNC)]2+, and the nitrile-ligated congener [(Me3Tacn)(phen)Ru(CH3CN)]2+ show that the Ru−C distances in the isocyanide complexes are sensitive to the electron richness of the metal center, and isocyanide has a stronger trans influence than nitrile. The lowest-energy dipole-allowed absorptions for the isocyanide and nitrile complexes (λmax = 330−405 and 417−458 nm, respectively, εmax = (3−6) × 103 dm3 mol−1 cm−1) are assigned as dπ(RuII) → π*(diimine) metal-to-ligand charge transfer (MLCT) transitions. These complexes are emissive in glassy MeOH/EtOH at 77 K upon photoexcitation and give emission at λmax = 477−601 nm. Density functional theory (DFT) calculations and charge decomposition analysis (CDA) have been used to compare the σ-donating and π-accepting abilities of nitrile and different organometallic ligands including isocyanide, methoxycarbene, and allenylidene. The molecular structure of the cofacial bioctahedral complex [(Me3Tacn)Ru(μ-Cl)3Ru(Me3Tacn)]+ has also been determined, and the Ru···Ru distance has been found to be 3.1842(6) Å.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.