We demonstrate a method of utilizing self-assembled nanorod array reflectors to collect the laterally propagating guided modes from a light emitting diode (LED). We measure an enhancement factor of 12.2% and 18.4%, respectively, from the sidewall emission of GaN-based LEDs encompassed with 10 and 20 microm thick nanorod array reflectors. Such enhancement is found to be omnidirectional due to a broken symmetry from a randomized distribution of the nanorod array placed along the periphery of the LED's mesa. These observations indicate that the use of nanorod reflectors can efficiently redirect the propagation of the laterally guided modes to the surface normal direction.
In this paper, by sping-coating a mono layer of nanospheres (nanoparticles) on top of the sample, the technology of nanosphere lithography is developed and applied to GaN based LED epistructures. By etching the p-type GaN further through the active region, p-i-n nanorods are exposed all over the mesa area. By inserting a spacer layer in between rods, nanrod LED arrays can be realized without shorting the p-type contact to n-GaN. The electrical and optical properties of the InGaN/GaN-based nanodevices are investigated at room temperatures.
We propose an on-wafer heat relaxation technology by selectively ion-implanted in part of the p-type GaN to decrease the junction temperature in the LED structure. The Si dopant implantation energy and concentration are characterized to exhibit peak carrier density 1×10 18 cm -3 at the depth of 137.6 nm after activation in nitrogen ambient at 750 °C for 30 minutes. The implantation schedule is designed to neutralize the selected region or to create a reverse p-n diode in the pGaN layer, which acts as the cold zone for heat dissipation. The cold zone with lower effective carrier concentration and thus higher resistance is able to divert the current path. Therefore, the electrical power consumption through the cold zone was reduced, resulting in less optical power emission from the quantum well under the cold zone. Using the diode forward voltage method to extract junction temperature, when the injection current increases from 10 to 60 mA, the junction temperature of the ion-implanted LED increases from 34.3 °C to 42.3 °C, while that of the conventional one rises from 30.3 °C to 63.6 °C. At 100 mA, the output power of the ion-implanted device is 6.09 % higher than that of the conventional device. The slight increase of optical power is due to the increase of current density outside the cold zone region of the implanted device and reduced junction temperature. The result indicates that our approach improves thermal dissipation and meanwhile maintains the linearity of L-I curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.