In this paper, we propose a novel mobile robot visual localization method consisting of two processing stages: map construction and visual localization. In the map construction stage, both laser range finder and camera are used to construct a composite map. Depth data are collected from laser range finder while distinct features of salient feature points are gathered from camera provided images. In the visual localization stage, only camera is used and the robot system detects feature points from camera provided images, computes features of the detected feature points, matches them with the features recorded in previously constructed composite map, and decides location of the robot. Using this method, a robot can locate its own position effectively without expensive laser range finder so that greater acceptance can be expected due to affordability. With the proposedmethod, several experiments have been performed. The matching accuracy of proposed feature extraction achieves 97.79%, compared with 92.96% of SURF. Experiment results show that our method not only reduces hardware cost of robot localization, but also offers high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.