Compression socks are used by a very diverse group of individuals and may potentially have a greater impact on physically diminished or impaired individuals as opposed to healthy individuals. The purpose of this study was to compare the effects of sub-clinical (SC) and clinical (CL) compression socks among healthy (CON), copers (COP), and individuals with chronic ankle instability (CAI). Postural stability was evaluated in 20 participants (11 males and 9 females) using Balance Tracking System Balance platform (BTrackS™) during the modified clinical test of sensory integration in balance (mCTSIB) and limits of stability (LOS) tests. Postural sway parameters were analyzed using a mixed model repeated measures analysis of variance 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, and CL) × 4 (balance condition: EO, EC, EOF, and ECF) for mCTSIB and a 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, CL) × 4 (balance condition: FL, BL, BR, FR) for LOS. Results revealed significantly greater postural stability with both SC and CL compression socks when compared to barefoot conditions. However, no significant differences were observed among groups for compression socks grades. Both SC and CL compression socks may be effective in increasing postural stability.
This study aims to quantify wearers’ perceived sensory/tactile comfort responses to clinical and sub-clinical compression socks before, during, and after several activities (postural stability tasks, donning, and doffing). Through purposive sampling, the researchers recruited 20 participants (11 male and 9 female) aged 21.5 ± 2 years. Among all participants, 40% had chronic ankle instability, 30% were copers, and 30% were healthy control groups. Sensory/tactile and movement comfort were assessed using a comfort 8-item questionnaire in a wear trial. The findings exhibit that the tested clinical socks are more comfortable than subclinical socks regardless of the participant types. The strongest positive correlation was between material appearance and hand feel (r = 0.84, ** p < 0.01) and between ‘no red marks’ and non-itchiness (r = 0.72, ** p < 0.01). Additionally, no statistically significant differences in comparisons of comfort assessment measures were reported. However, due to the consistency of the trends in differences, the researchers suggest that these findings warrant additional research using a more robust sampling technique. According to the findings of this study, a higher-pressure level compression sock may be preferable for patients with ankle stability issues, as there is no significant evidence for a comforting outcome.
The Star Excursion Balance Test (SEBT) is a common assessment used across clinical and research settings to test dynamic standing balance. The primary measure of this test is maximal reaching distance performed by the non-stance limb. Response time (RT) is a critical cognitive component of dynamic balance control and the faster the RT, the better the postural control and recovery from a postural perturbation. However, the measure of RT has not been done in conjunction with SEBT, especially with musculoskeletal fatigue. The purpose of this study is to examine RT during a SEBT, creating a modified SEBT (mSEBT), with a secondary goal to examine the effects of muscular fatigue on RT during SEBT. Sixteen healthy young male and female adults [age: 20 ± 1 years; height: 169.48 ± 8.2 cm; weight: 67.93 ± 12.7 kg] performed the mSEBT in five directions for three trials, after which the same was repeated with a response time task using Blazepod™ with a random stimulus. Participants then performed a low-intensity musculoskeletal fatigue task and completed the above measures again. A 2 × 2 × 3 repeated measures ANOVA was performed to test for differences in mean response time across trials, fatigue states, and leg reach as within-subjects factors. All statistical analyses were conducted in JASP at an alpha level of 0.05. RT was significantly faster over the course of testing regardless of reach leg or fatigue state (p = 0.023). Trial 3 demonstrated significantly lower RT compared to Trial 1 (p = 0.021). No significant differences were found between fatigue states or leg reach. These results indicate that response times during the mSEBT with RT is a learned skill that can improve over time. Future research should include an extended familiarization period to remove learning effects and a greater fatigue state to test for differences in RT during the mSEBT.
While design modifications present on work boots improve safety, they may not always provide optimal human performance during work tasks. Understanding the impact of these different design features on biomechanical and physiological postural control and locomotion variables can aid in better design modifications that can provide a safe and efficient human performance. This brief review focuses on a series of studies conducted by the current research team, that have tested three different work boots (SB: high-top steel-toed work boots; TB: high-top tactical work boots; SR: low-top slip-resistant work boots). The series of studies included testing of these work boots or combinations of them under acute and chronic simulated occupational workloads, assessing biomechanical variable such as postural stability, gait, slips, and muscle activity, as well as physiological variables such as heart rate, energy expenditure, oxygen consumption, and pain perception. The impact of each of the work boots and their design feature on postural control and locomotion are summarized from these studies’ previously published literature. Finally, work boot design suggestions for optimal human performance are provided for better work boot selection, modification, and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.