To improve the crashworthiness and energy absorption of thin-walled tube structures, a bionic thin-walled tube was designed based on the structural characteristics of antler osteon and the principle of structural bionics and had the same inner and outer diameters and the same gradient thickness as antler osteon. A nonlinear finite element method is used to simulate the crashworthiness of a thin-walled tube with equal gradient thickness variation (EGTTS) under axial and oblique loads. The crashworthiness of EGTTS-7 (Egtts with 7 layers) was evaluated using the complex proportional assessment(COPRAS). A multi-objective particle swarm optimization (MOPSO) algorithm was used to optimize the EGTTS-7 and the Pareto boundary was used to obtain the optimal structure parameters of the EGTTS-7 by using the loading angles of 0°, 10°, 20°, and 30°. It is found that the crashworthiness of the EGTTS is best when the axial load weight factor of the case is large. Compared with EGTTS and circular tubes(CT), F max can be reduced by up to 50.1% and EA can be increased by up to 22.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.