Based on a large data set of emoji using behavior collected from smartphone users over the world, this paper investigates genderspecific usage of emojis. We present various interesting findings that evidence a considerable difference in emoji usage by female and male users. Such a difference is significant not just in a statistical sense; it is sufficient for a machine learning algorithm to accurately infer the gender of a user purely based on the emojis used in their messages. In real world scenarios where gender inference is a necessity, models based on emojis have unique advantages over existing models that are based on textual or contextual information. Emojis not only provide language-independent indicators, but also alleviate the risk of leaking private user information through the analysis of text and metadata.
The prevalence of smart mobile devices has promoted the popularity of mobile applications (a.k.a. apps). Supporting mobility has become a promising trend in software engineering research. This article presents an empirical study of behavioral service profiles collected from millions of users whose devices are deployed with Wandoujia, a leading Android app-store service in China. The dataset of Wandoujia service profiles consists of two kinds of user behavioral data from using 0.28 million free Android apps, including (1) app management activities (i.e., downloading, updating, and uninstalling apps) from over 17 million unique users and (2) app network usage from over 6 million unique users. We explore multiple aspects of such behavioral data and present patterns of app usage. Based on the findings as well as derived knowledge, we also suggest some new open opportunities and challenges that can be explored by the research community, including app development, deployment, delivery, revenue, etc.Index Terms-mobile apps, app store, user behavior analysis !
App marketplaces host millions of mobile apps that are downloaded billions of times. Investigating how people manage mobile apps in their everyday lives creates a unique opportunity to understand the behavior and preferences of mobile device users, infer the quality of apps, and improve user experience. Existing literature provides very limited knowledge about app management activities, due to the lack of app usage data at scale. This article takes the initiative to analyze a very large app management log collected through a leading Android app marketplace. The dataset covers 5 months of detailed downloading, updating, and uninstallation activities, which involve 17 million anonymized users and 1 million apps. We present a surprising finding that the metrics commonly used to rank apps in app stores do not truly reflect the users' real attitudes. We then identify behavioral patterns from the app management activities that more accurately indicate user preferences of an app even when no explicit rating is available. A systematic statistical analysis is designed to evaluate machine learning models that are trained to predict user preferences using these behavioral patterns, which features an inverse probability weighting method to correct the selection biases in the training process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.