Objective Icariin (IC) promotes osteogenic differentiation, and it may be a potential small molecule drug for local application in bone regeneration. Icariin-loaded hydroxyapatite/alginate (IC/HAA) porous composite scaffolds were designed in this study for the potential application of the sustainable release of icariin and subsequent bone regeneration. Methods An icariin-loaded hydroxyapatite/alginate porous composite scaffold was prepared and characterized by SEM and HPLC for morphology and release behavior, respectively. The mechanical properties, degradation in PBS and cytotoxicity on BMSCs were also evaluated by MTT assay, compression strength and calculation of weight remaining ratio, respectively. Rabbit BMSCs were cocultured with IC/HAA scaffolds, and ALP activity and Alizarin Red staining were performed to evaluate osteogenic differentiation induction. The mRNA and protein expression level of an osteogenic gene was detected by RT-PCR and Western blotting, respectively. In vivo animal models of critical bone defects in the radius of rabbit were used. Four and 12 weeks after the implantation of IC/HAA scaffolds in the bone defect, radiographic images of the radius were obtained and scored by using the Lane and Sandhu X-ray scoring system. Tissue samples were also evaluated using H&E and Masson staining, and an osteogenic gene and Wnt signaling pathway genes were detected. Results A hydroxyapatite/alginate (HAA) porous composite scaffold-loaded icariin was fabricated using a freeze-drying method. Our data indicated that the icariin was loaded in alginate scaffold without compromising the macro/microstructure or mechanical properties of the scaffold. Notably, the IC/HAA promoted the proliferation of rBMSCs without exerting cytotoxicity on rBMSCs. In vivo, rabbit radius bone defect experiments demonstrated that the IC/HAA scaffold exhibited better capacity for bone regeneration than HAA, and IC/HAA upregulated the relative expression levels of an osteogenic gene and the Wnt signaling pathway genes. Most notably, the IC/HAA scaffold also inhibited osteoclast activity in vivo. Conclusion Our data suggests a promising application for the use of HAA scaffolds to load icariin and promote bone regeneration in situ through mediation of the coupling processes of osteogenesis induction and osteoclast activity inhibition.
Objective The purpose of this study is to explore the effect of miRNA-539 on osteosarcoma (OS) and the underlying mechanism, so as to find a new method for early diagnosis and treatment of osteosarcoma. Method miRNA-539 mimics was transfected into osteosarcoma cells 143b and MG-63 and upregulated the expression of miR-539. QT-PCR was used to detect transfection efficacy. CCK-8 method was used to detect proliferation of 143b and MG-63 osteosarcoma cells and flow cytometry was used to detect the apoptosis of osteosarcoma cells 143b and MG-63. Wound-healing test and Transwell test were used to detect the migration and invasion ability of osteosarcoma cells. TRIAP1 was found to be the potential target gene of miRNA-539 by online bioinformatics software and the expression level of TRIAP1 in osteosarcoma cells overexpressing miRNA-539 was detected by qT-PCR. Western blot was used to detect the level of expression of TRIAP1 and its downstream genes (p53, p21, apaf1 and caspase9) in osteosarcoma cells 143b and MG63 transfected with miR-539 mimics or miR-539 mimics-NC. A model of osteosarcoma subcutaneously transplanted in nude mice was constructed to observe the effect of miRNA-539 on the growth rate of osteosarcoma in vivo. Results After transfection of miRNA-539 mimics in osteosarcoma cells 143b and MG63, the proliferation level, migration ability, and invasion ability of the osteosarcoma cells were significantly lower than that in the control group, and the apoptosis level was significantly higher than that in the control group (P < 0.01). The dual luciferase reporter confirmed that TRIAP1 was the target of miR-539, and the expression level of TRIAP1 in 143b and MG63 transfected with miRNA-539 mimics was proved to be significantly lower than that in the control group (P < 0.01).The western blot showed the expression of genes targeted by TRIAP1 was upregulated when the expression of TRIAP1 was downregulated. In vivo, the osteosarcoma growth rate in the miRNA-539 mimics group was significantly slower than that in the control group (P < 0.01). Conclusions MiRNA-539 may inhibit the cell proliferation, migration and invasion of osteosarcoma cells and promote the apoptosis of osteosarcoma cells by targeting on TRIAP1.
Aim: We attempted to synthesize a magnetic gene carrier with poly(ethylenimine), dextran and iron oxide nanoparticles (PDIs) for miR-302b transfection in vitro and in vivo. Materials & methods: The nanoparticles were characterized for hydrodynamic properties, ζ potential and DNA-binding ability, evaluated by transmission electron microscopy. Cellular internalization, magnetofection efficiency and anti-osteosarcoma effects were investigated in osteosarcoma (OS) cells and OS-bearing nude mice. Results: PDIs were successfully prepared and showed mild cytotoxicity. A magnetic field efficiently enabled transport of PDI/pmiR302b to OS cells in OS-bearing nude mice, exerting the anti-osteosarcoma effect of miR-302b at the tumor site. The inhibitory effect of miR-302b on osteosarcoma-bearing nude mice may be attributed to regulation of the Hippo pathway through YOD1. Conclusion: Low-cytotoxic PDIs have potential applications as a magnetic transport carrier for future osteosarcoma treatment.
Objective The purpose of this study is to explore the effect of miRNA-539 on osteosarcoma and the underlying mechanism, so as to find a new method for early diagnosis and treatment of osteosarcoma. Method miRNA-539 mimics was transfected into osteosarcoma cells 143b and MG-63 and upregulated the expression of miR-539. QT-PCR was used to detect transfection efficacy. CCK-8 method was used to detect proliferation of 143b and MG-63 osteosarcoma cells and flow cytometry was used to detect the apoptosis of osteosarcoma cells 143b and MG-63. Wound-healing test and Transwell test were used to detect the migration and invasion ability of osteosarcoma cells. TRIAP1 was found to be the potential target gene of miRNA-539 by online bioinformatics software and the expression level of TRIAP1 in osteosarcoma cells overexpressing miRNA-539 was detected by qT-PCR. Western blot was used to detect the level of expression of TRIAP1 and its downstream genes (p53, p21, apfa1 and caspase9) in osteosarcoma cells 143b and MG63 transfected with miR-539 mimics or miR-539 mimics-NC. A model of osteosarcoma subcutaneously transplanted in nude mice was constructed to observe the effect of miRNA-539 on the growth rate of osteosarcoma in vivo. Results After transfection of miRNA-539 mimics in osteosarcoma cells 143b and MG63, the proliferation level, migration ability, and invasion ability of the osteosarcoma cells were significantly lower than that in the control group, and the apoptosis level was significantly higher than that in the control group (P < 0.01). The dual luciferase reporter confirmed that TRIAP1 was the target of miR-539, and the expression level of TRIAP1 in 143b and MG63 transfected with miRNA-539 mimics was proved to be significantly lower than that in the control group (P < 0.01).The western blot showed the expression of genes targeted by TRIAP1 was upregulated when the expression of TRIAP1 was downregulated. In vivo, the osteosarcoma growth rate in the miRNA-539 mimics group was significantly slower than that in the control group (P < 0.01). Conclusion MiRNA-539 may inhibit the cell proliferation, migration and invasion of osteosarcoma cells and promote the apoptosis of osteosarcoma cells by targeting on TRIAP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.