In this study, a dual-port wind-energy conversion system has been proposed. A double-fed permanentmagnet synchronous generator (DFPMSG) forms the central part of the system, where the concentrated single-layer winding configuration of the generator enables electric and magnetic isolation between the ports. DFPMSG has two three-phase terminals out of the stator; one is connected directly to the grid, whereas the other is tied to the grid through a back-to-back converter. This study investigates design issues caused by the DFPMSG port with a direct grid connection. The unique design issues of the proposed system include determining the slot/pole combination using wind data and determining the minimum reactive power requirement for the port with a direct grid connection. Next, the load-sharing capability among the ports of the proposed system is presented through a detailed investigation of three schemes. Experimental work is presented for a 5-kW prototype DFPMSG system to illustrate the isolation among the ports, minimized reactive power demand on the port with direct grid connection, and load-sharing ability among the ports for different control schemes.INDEX TERMS Double-fed machines, electric machine design, multi-port systems, permanent magnet synchronous generators, wind energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.