Sign language includes the motion of the arms and hands to communicate with people with hearing disabilities. Several models have been available in the literature for sign language detection and classification for enhanced outcomes. But the latest advancements in computer vision enable us to perform signs/gesture recognition using deep neural networks. This paper introduces an Arabic Sign Language Gesture Classification using Deer Hunting Optimization with Machine Learning (ASLGC-DHOML) model. The presented ASLGC-DHOML technique mainly concentrates on recognising and classifying sign language gestures. The presented ASLGC-DHOML model primarily pre-processes the input gesture images and generates feature vectors using the densely connected network (DenseNet169) model. For gesture recognition and classification, a multilayer perceptron (MLP) classifier is exploited to recognize and classify the existence of sign language gestures. Lastly, the DHO algorithm is utilized for parameter optimization of the MLP model. The experimental results of the ASLGC-DHOML model are tested and the outcomes are inspected under distinct aspects. The comparison analysis highlighted that the ASLGC-DHOML method has resulted in enhanced 3414 CMC, 2023, vol.75, no.2 gesture classification results than other techniques with maximum accuracy of 92.88%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.