The diagnosis and surgical resection using Magnetic Resonance (MR) images in brain tumors is a challenging task to minimize the neurological defects after surgery owing to the non-linear nature of the size, shape, and textural variation. Radiologists, clinical experts, and brain surgeons examine brain MRI scans using the available methods, which are tedious, error-prone, time-consuming, and still exhibit positional accuracy up to 2–3 mm, which is very high in the case of brain cells. In this context, we propose an automated Ultra-Light Brain Tumor Detection (UL-BTD) system based on a novel Ultra-Light Deep Learning Architecture (UL-DLA) for deep features, integrated with highly distinctive textural features, extracted by Gray Level Co-occurrence Matrix (GLCM). It forms a Hybrid Feature Space (HFS), which is used for tumor detection using Support Vector Machine (SVM), culminating in high prediction accuracy and optimum false negatives with limited network size to fit within the average GPU resources of a modern PC system. The objective of this study is to categorize multi-class publicly available MRI brain tumor datasets with a minimum time thus real-time tumor detection can be carried out without compromising accuracy. Our proposed framework includes a sensitivity analysis of image size, One-versus-All and One-versus-One coding schemes with stringent efforts to assess the complexity and reliability performance of the proposed system with K-fold cross-validation as a part of the evaluation protocol. The best generalization achieved using SVM has an average detection rate of 99.23% (99.18%, 98.86%, and 99.67%), and F-measure of 0.99 (0.99, 0.98, and 0.99) for (glioma, meningioma, and pituitary tumors), respectively. Our results have been found to improve the state-of-the-art (97.30%) by 2%, indicating that the system exhibits capability for translation in modern hospitals during real-time surgical brain applications. The method needs 11.69 ms with an accuracy of 99.23% compared to 15 ms achieved by the state-of-the-art to earlier to detect tumors on a test image without any dedicated hardware providing a route for a desktop application in brain surgery.
Many organizations nowadays own a number of legacy software systems and maintain them functional to fulfill their daily business operations. However, legacy systems cannot always accommodate newly emerging business needs, thus might negatively impact organization's shares in the market. So, CEOs need to recognize the limitation of their legacy systems and identify the best action for dealing with these systems considering possible options at hand. One possible solution is to replace the entire system with brand new off-the-shelf systems. Equally, improving the architecture of a legacy system can be a valid option to consider as well. A third option can be via using middleware to encapsulate legacy system. The decision for which approach to follow when dealing with legacy software system must be made based on through investigation of the nature of the system. This paper describes a framework to assess legacy software systems in order to support CEOs to make an informed decision to either keep or replace their existing legacy systems. The framework assesses legacy systems considering four main contexts namely, support, business, architecture, and technology. We have applied the proposed framework to assess a legacy system of an organization in the region of Saudi Arabia to evaluate its usefulness and practicality. The results of the conducted study were in favor of re-architecting the system of the organization as the most appropriate option in the light of the values given for each context.
Remote sensing image (RSI) scene classification has become a hot research topic due to its applicability in different domains such as object recognition, land use classification, image retrieval, and surveillance. During RSI classification process, a class label will be allocated to every scene class based on the semantic details, which is significant in real-time applications such as mineral exploration, forestry, vegetation, weather, and oceanography. Deep learning (DL) approaches, particularly the convolutional neural network (CNN), have shown enhanced outcomes on the RSI classification process owing to the significant aspect of feature learning as well as reasoning. In this aspect, this study develops fuzzy cognitive maps with a bird swarm optimization-based RSI classification (FCMBS-RSIC) model. The proposed FCMBS-RSIC technique inherits the advantages of fuzzy logic (FL) and swarms intelligence (SI) concepts. In order to transform the RSI into a compatible format, preprocessing is carried out. Besides, the features are produced by the use of the RetinaNet model. Besides, a FCM-based classifier is involved to allocate proper class labels to the RSIs and the classification performance can be improved by the design of bird swarm algorithm (BSA). The performance validation of the FCMBS-RSIC technique takes place using benchmark open access datasets, and the experimental results reported the enhanced outcomes of the FCMBS-RSIC technique over its state-of-the-art approaches.
Accurate radiogenomic classification of brain tumors is important to improve the standard of diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). The application of the novice rejection algorithm has been found significantly effective in selecting and isolating the negative training instances out of the original dataset. The fused feature vectors are then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification performance, for the very first time in published form, in terms of measures like accuracy, F1-score, and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, (96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection algorithm has been found to perform outclass capable of detecting MGMT methylation status of glioblastoma patients. The approach relates the genomic variation with radiomic features forming a bridge between two areas of research that may prove useful for clinical treatment planning leading to better outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.