BackgroundCancer subtype classification attains the great importance for accurate diagnosis and personalized treatment of cancer. Latest developments in high-throughput sequencing technologies have rapidly produced multi-omics data of the same cancer sample. Many computational methods have been proposed to classify cancer subtypes, however most of them generate the model by only employing gene expression data. It has been shown that integration of multi-omics data contributes to cancer subtype classification.ResultsA new hierarchical integration deep flexible neural forest framework is proposed to integrate multi-omics data for cancer subtype classification named as HI-DFNForest. Stacked autoencoder (SAE) is used to learn high-level representations in each omics data, then the complex representations are learned by integrating all learned representations into a layer of autoencoder. Final learned data representations (from the stacked autoencoder) are used to classify patients into different cancer subtypes using deep flexible neural forest (DFNForest) model.Cancer subtype classification is verified on BRCA, GBM and OV data sets from TCGA by integrating gene expression, miRNA expression and DNA methylation data. These results demonstrated that integrating multiple omics data improves the accuracy of cancer subtype classification than only using gene expression data and the proposed framework has achieved better performance compared with other conventional methods.ConclusionThe new hierarchical integration deep flexible neural forest framework(HI-DFNForest) is an effective method to integrate multi-omics data to classify cancer subtypes.
Although the sentiment analysis domain has been deeply studied in the last few years, the analysis of social media content is still a challenging task due to the exponential growth of multimedia content. Natural language ambiguities and indirect sentiments within the social media text have made it hard to classify. Aspect-based sentiment analysis creates a need to develop explicit extraction techniques using syntactic parsers to exploit the relationship between the aspect and sentiment terms. Along with the extraction approaches, word embeddings are generated through Word2Vec models for the continuous low-dimensional vector representation of text that fails to capture the significant sentiment information. This paper presents a co-extraction model with refined word embeddings to exploit the dependency structures without using syntactic parsers. For this purpose, a deep learning-based multilayer dual-attention model is proposed to exploit the indirect relation between the aspect and opinion terms. In addition, word embeddings are refined by providing distinct vector representations to dissimilar sentiments, unlike the Word2Vec model. For this, we have employed a sentiment refinement technique for pre-trained word embedding model to overcome the problem of similar vector representations of opposite sentiments. Performance of the proposed model is evaluated on three benchmark datasets of SemEval Challenge 2014 and 2015. The experimental results indicate the effectiveness of our model compared to the existing state-of-the-art models for the aspect-based sentiment analysis.INDEX TERMS Aspect based sentiment analysis, deep learning, natural language processing, opinion mining and word embeddings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.