Different molecular subtypes can be identified in muscle-invasive bladder cancer. Although cisplatin-based neoadjuvant chemotherapy improves patient outcomes, we identified that the benefit is highest in patients with basal tumors. Our newly discovered classifier can identify these molecular subtypes in a single patient and could be integrated into routine clinical practice after further validation.
Prostate cancer (PC) is a biologically heterogeneous disease with variable molecular alterations underlying cancer initiation and progression. Despite recent advances in understanding PC heterogeneity, better methods for classification of PC are still needed to improve prognostic accuracy and therapeutic outcomes. In this study we computationally assembled a large virtual cohort (n=1,321) of human PC transcriptome profiles from 38 distinct cohorts and, using pathway activation signatures of known relevance to PC, developed a novel classification system consisting of 3 distinct subtypes (named PCS1 to 3). We validated this subtyping scheme in 10 independent patient cohorts and 19 laboratory models of PC, including cell lines and genetically engineered mouse models. Analysis of subtype-specific gene expression patterns in independent datasets derived from luminal and basal cell models provides evidence that PCS1 and PCS2 tumors reflect luminal subtypes, while PCS3 represents a basal subtype. We show that PCS1 tumors progress more rapidly to metastatic disease in comparison to PCS2 or PCS3, including PSC1 tumors of low Gleason grade. To apply this finding clinically, we developed a 37-gene panel that accurately assigns individual tumors to one of the 3 PCS subtypes. This panel was also applied to circulating tumor cells (CTCs) and provided evidence that PCS1 CTCs may reflect enzalutamide resistance. In summary, PCS subtyping may improve accuracy in predicting the likelihood of clinical progression and permit treatment stratification at early and late disease stages.
Standard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective was to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues.Global gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging areas (‘habitats’) were identified on MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal appearing tissues. We correlated 49 radiomic features with three clinically available gene signatures associated with adverse outcome. The signatures contain genes that are over-expressed in aggressive prostate cancers and genes that are under-expressed in aggressive prostate cancers. There were significant correlations between these genes and quantitative imaging features, indicating the presence of prostate cancer prognostic signal in the radiomic features. Strong associations were also found between the radiomic features and significantly expressed genes. Gene ontology analysis identified specific radiomic features associated with immune/inflammatory response, metabolism, cell and biological adhesion. To our knowledge, this is the first study to correlate radiogenomic parameters with prostate cancer in men with MRI-guided biopsy.
A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.