Biodiesel is considered to be a promising alternative option to diesel fuel. The main contribution of the current work is to improve compression ignition engine performance, fueled by several biodiesel blends. Three metrics were used to evaluate the output performance of the compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type). The engine speeds were in the 1200–2400 rpm range. Three biodiesel blends, containing 20 vol.% of vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed the following findings: although all types of biodiesel blends have low calorific value and slightly high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower, and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is created, depending on the experimental results, to simulate the output performance of the compression ignition engine. The particle swarm optimization (PSO) algorithm is used in the second stage to determine the optimal operating parameters. To confirm the distinction of the proposed strategy, the obtained outcomes were compared to those attained by response surface methodology (RSM). The coefficient of determination (R2) and the root-mean-square-error (RMSE) were used as comparison metrics. The average R2 was increased by 27.7% and 29.3% for training and testing, respectively, based on the fuzzy model. Using the proposed strategy in this work (integration between fuzzy logic and PSO) may increase the overall performance of the compression ignition engine by 2.065% and 8.256%, as concluded from the experimental tests and RSM.
Automated glasses detection is a cardinal component in facial/ocular analysis that powers forensic, surveillance and biometric authentication systems. Throughout literature, glasses detection was always experimented by either utilizing hand‐crafted or deep learning features. Nevertheless, in both cases, highly standard face/ocular images were needed to derive the suggested technique. Both working methods performed reasonably well, but the results were bonded to the quality of the facial image and extracted features, where a slight shift and/or rotation in the input face image negatively affects the results. In addition, the obtained performance is even worse on real‐world (non‐standard) images, especially when compared to recent achievements in other computer vision research areas. In this paper, we present a robust deep learning approach for glasses detection from selfie photos full/partial frontal body non‐standard images captured in real‐life uncontrolled environments that do not utilize any facial landmarks. To the best of our knowledge this paper is the first to experiment detecting glasses from selfie photos, using a robust deep learning approach. Experimental results on various benchmark facial analysis datasets demonstrated the superior performance of the proposed technique with 96% accuracy.
A series of tests were carried out to assess the environmental effects of biodiesel blends made of different vegetable oil, such as corn, sunflower, and palm, on exhaust and noise diesel engine emissions. Biodiesel blends with 20% vegetable oil biodiesel and 80% diesel fuel by volume were developed. The tests were conducted in a stationary diesel engine test bed consisting of a single-cylinder, four-stroke, and direct injection engine at variable engine speed. A prediction framework in terms of polynomial regression (PR) was first adopted to determine the correlation between the independent variables (engine speed, fuel type) and the dependent variables (exhaust emissions, noise level, and brake thermal efficiency). After that, a regression model was optimized by the grey wolf optimization (GWO) algorithm to update the current positions of the population in the discrete searching space, resulting in the optimal engine speed and fuel type for lower exhaust and noise emissions and maximizing engine performance. The following conclusions were drawn from the experimental and optimization results: in general, the emissions of unburned hydrocarbon (UHC), carbon dioxide (CO2), and carbon monoxide (CO) from all the different types of biodiesel blends were lower than those of diesel fuel. In contrast, the concentration of nitrogen oxides (NOx) emitted by all the types of biodiesel blends increased. The noise level produced by all the forms of biodiesel, especially palm biodiesel fuel, was lowered when compared to pure diesel. All the tested fuels had a high noise level in the middle frequency band, at 75% engine load, and high engine speeds. On average, the proposed PR-GWO model exhibited remarkable predictive reliability, with a high square of correlation coefficient (R2) of 0.9823 and a low root mean square error (RMSE) of 0.0177. Finally, the proposed model achieved superior outcomes, which may be utilized to predict and maximize engine performance and minimize exhaust and noise emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.