Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.
Defects in autophagy are implicated in a growing number of diseases. Jelani
et al.
identify a mutation in
WIPI2
, a major autophagy gene, associated with a multisystemic global developmental disorder. Functional studies in cell lines derived from patients reveal significant reductions in the classic hallmarks of autophagy.
Childhood onset clinical syndromes involving intellectual disability and dysmorphic features, such as polydactyly, suggest common developmental pathways link seemingly unrelated phenotypes. We identified a consanguineous family of Saudi origin with varying complex features including intellectual disability, speech delay, facial dysmorphism and polydactyly. Combining, microarray based comparative genomic hybridisation (CGH) to identify regions of homozygosity, with exome sequencing, led to the identification of homozygous mutations in five candidate genes (RSPH6A, ANKK1, AMOTL1, ALKBH8, TRAPPC6A), all of which appear to be pathogenic as predicted by Proven, SIFT and PolyPhen2 and segregate perfectly with the disease phenotype. We therefore looked for differences in expression levels of each protein in HEK293 cells, expressing either the wild-type or mutant full-length cDNA construct. Unexpectedly, wild-type TRAPPC6A appeared to be unstable, but addition of the proteasome inhibitor MG132 stabilised its expression. Mutations have previously been reported in several members of the TRAPP complex of proteins, including TRAPPC2, TRAPPC9 and TRAPPC11, resulting in disorders involving skeletal abnormalities, intellectual disability, speech impairment and developmental delay. TRAPPC6A joins a growing list of proteins belonging to the TRAPP complex, implicated in clinical syndromes with neurodevelopmental abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.