Considerable amounts of molecular and genetic data indicate that interspecific hybridisation may not be rare among natural strains of Saccharomyces sensu stricto. Although a post-zygotic barrier operating during meiosis usually prevents the production of viable spores, stable hybrids can arise which can even evolve into distinct species. This study was aimed to analyse the genome of a fertile Saccharomyces cerevisiae x S. uvarum hybrid and monitor its changes over four filial generations of viable spores. The molecular genetic analysis demonstrated that the two species did not contribute equally to the formation and stabilisation of the hybrid genome. S. cerevisiae provided the mitochondrial DNA and the more stable part of the nuclear genome. The S. uvarum part of the hybrid nuclear genome became progressively smaller by loosing complete chromosomes and genetic markers in the course of successive meiotic divisions. Certain S. uvarum chromosomes were eliminated and/or underwent rearrangements in interactions with S. cerevisiae chromosomes. Numerous S. uvarum chromosomes acquired S. cerevisiae telomere sequences. The gradual elimination of large parts of the S. uvarum genome was associated with a progressive increase of sporulation efficiency. We hypothesise that this sort of genomic alterations may contribute to speciation in Saccharomyces sensu stricto.
In order to study meiotic segregation of chromosome length polymorphism in yeast, we analysed the progeny of a cross involving two laboratory strains FL100trp and YNN295. Analysis of the parental strains led us to detect an important length polymorphism of chromosomes I and III in FL100trp. A reciprocal translocation involving 80 kb of the left arm of chromosome III and 45 kb of the right arm of chromosome I was shown to be the cause for the observed polymorphism in this strain. The characterization of the translocation breakpoints revealed the existence of a transposition hot‐spot on chromosome I: the sequence of the translocation joints on chromosomes I and III suggests that the mechanism very likely involved homologous recombination between Ty2 transposable elements on each chromosome. Analysis of FL100, FL200 and FL100trp ura, which are related to FL100trp, shows that this reciprocal translocation is present in some of the strains of the FL series, whereas the parental strain FL100 does not carry the same rearrangement. We evidenced instead the duplication of 80 kb of chromosome III on chromosome I and a deletion of 45 kb of the right arm of chromosome I in this strain, indicating that secondary events might have taken place and that the strain currently named FL100 is not the common ancestor of the FL series. © 1998 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.