Reactive oxygen species (ROS) are important messengers in eukaryotic organisms, and their production is tightly controlled. Active extracellular ROS production by NADPH oxidases in plants is triggered by receptor-like protein kinase-dependent signaling networks. Here, we show that CYSTEINE-RICH RLK2 (CRK2) kinase activity is required for plant growth and CRK2 exists in a preformed complex with the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) in Arabidopsis (Arabidopsis thaliana). Functional CRK2 is required for the full elicitor-induced ROS burst, and consequently the crk2 mutant is impaired in defense against the bacterial pathogen Pseudomonas syringae pv tomato DC3000. Our work demonstrates that CRK2 regulates plant innate immunity. We identified in vitro CRK2-dependent phosphorylation sites in the C-terminal region of RBOHD. Phosphorylation of S703 RBOHD is enhanced upon flg22 treatment, and substitution of S703 with Ala reduced ROS production in Arabidopsis. Phylogenetic analysis suggests that phospho-sites in the C-terminal region of RBOHD are conserved throughout the plant lineage and between animals and plants. We propose that regulation of NADPH oxidase activity by phosphorylation of the C-terminal region might be an ancient mechanism and that CRK2 is an important element in regulating microbe-associated molecular pattern-triggered ROS production.
High salinity is an increasingly prevalent source of stress to which plants must adapt. The receptor-like protein kinases, including members of the Cys-rich receptor-like kinase (CRK) subfamily, are a highly expanded family of transmembrane proteins in plants that are largely responsible for communication between cells and the extracellular environment. Various CRKs have been implicated in biotic and abiotic stress responses; however, their functions on a cellular level remain largely uncharacterized. Here we have shown that CRK2 enhances salt tolerance at the germination stage in Arabidopsis (Arabidopsis thaliana) and also modulates root length. We established that functional CRK2 is required for salt-induced callose deposition. In doing so, we revealed a role for callose deposition in response to increased salinity and demonstrated its importance for salt tolerance during germination. Using fluorescently tagged proteins, we observed specific changes in the subcellular localization of CRK2 in response to various stress treatments. Many of CRK2's cellular functions were dependent on phospholipase D activity, as were the subcellular localization changes. Thus, we propose that CRK2 acts downstream of phospholipase D during salt stress, promoting callose deposition and regulating plasmodesmal permeability, and that CRK2 adopts specific stress-dependent subcellular localization patterns that allow it to carry out its functions.
Plants respond to mechanical stimuli to direct their growth and counteract environmental threats. Mechanical stimulation triggers rapid gene expression changes and affects plant appearance (thigmomorphogenesis) and flowering. Previous studies reported the importance of jasmonic acid (JA) in touch signaling. Here, we used reverse genetics to further characterize the molecular mechanisms underlying touch signaling. We show that Piezo mechanosensitive ion channels have no major role in touch-induced gene expression and thigmomorphogenesis. In contrast, the receptor-like kinase Feronia acts as a strong negative regulator of the JA-dependent branch of touch signaling. Last, we show that calmodulin-binding transcriptional activators CAMTA1/2/3 are key regulators of JA-independent touch signaling. CAMTA1/2/3 cooperate to directly bind the promoters and activate gene expression of JA-independent touch marker genes like TCH2 and TCH4 . In agreement, camta3 mutants show a near complete loss of thigmomorphogenesis and touch-induced delay of flowering. In conclusion, we have now identified key regulators of two independent touch-signaling pathways.
Background Stored potato ( Solanum tuberosum L.) tubers are sensitive to wet conditions that can cause rotting in long-term storage. To study the effect of water on the tuber surface during storage, microarray analysis, RNA-Seq profiling, qRT-PCR and phytohormone measurements were performed to study gene expression and hormone content in wet tubers incubated at two temperatures: 4 °C and 15 °C. The growth of the plants was also observed in a greenhouse after the incubation of tubers in wet conditions. Results Wet conditions induced a low-oxygen response, suggesting reduced oxygen availability in wet tubers at both temperatures when compared to that in the corresponding dry samples. Wet conditions induced genes coding for heat shock proteins, as well as proteins involved in fermentative energy production and defense against reactive oxygen species (ROS), which are transcripts that have been previously associated with low-oxygen stress in hypoxic or anoxic conditions. Wet treatment also induced senescence-related gene expression and genes involved in cell wall loosening, but downregulated genes encoding protease inhibitors and proteins involved in chloroplast functions and in the biosynthesis of secondary metabolites. Many genes involved in the production of phytohormones and signaling were also affected by wet conditions, suggesting altered regulation of growth by wet conditions. Hormone measurements after incubation showed increased salicylic acid (SA), abscisic acid (ABA) and auxin (IAA) concentrations as well as reduced production of jasmonate 12-oxo-phytodienoic acid (OPDA) in wet tubers. After incubation in wet conditions, the tubers produced fewer stems and more roots compared to controls incubated in dry conditions. Conclusions In wet conditions, tubers invest in ROS protection and defense against the abiotic stress caused by reduced oxygen due to excessive water. Changes in ABA, SA and IAA that are antagonistic to jasmonates affect growth and defenses, causing induction of root growth and rendering tubers susceptible to necrotrophic pathogens. Water on the tuber surface may function as a signal for growth, similar to germination of seeds. Electronic supplementary material The online version of this article (10.1186/s12870-019-1875-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.