This paper introduces a big data analytics solution for destination management organization's decision support
•The design artifact is specified as a 'method' to analyse the social media data to support strategic decision-making in tourism• Proposed solution method has the capability to provide insight of tourist's behavioural patterns at destinations.
Dining is an essential tourism component that attracts significant expenditure from tourists. Tourism practitioners need insights into the dining behaviors of tourists to support their strategic planning and decision making. Traditional surveys and questionnaires are time consuming and inefficient in capturing the complex dining behaviors of tourists at a large scale. Thus far, the understanding about the dining preferences and opinions of different tourist groups is limited. This paper aims to fill the void by presenting a method that utilizes online restaurant reviews and text processing techniques in analyzing the dining behaviors of tourists. The effectiveness of the proposed method is demonstrated in a case study on international tourists visiting Australia using a large-scale data set of more than 40,000 restaurant reviews made by tourists on 2,265 restaurants. The proposed method can help researchers gain comprehensive insights into the dining preferences of tourists.
Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or userlevel). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with "anyrisk", personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.